Cancer chemotherapy targeted to angiogenic vessels is expected to cause indirect tumor regression through the damage of the neovasculature without the induction of drug resistance. To develop a tool for neovasculature-specific drug delivery, we isolated novel peptides homing to angiogenic vessels formed by a dorsal air sac method from a phage-displayed peptide library. Three distinct phage clones that markedly accumulated in murine tumor xenografts presented PRPGAPLAGSWPGTS-, DRWRPALPVVLFPLH- or ASSSYPLIHWRPWAR-peptide respectively. After the determination of the epitope sequences of these peptides, we modified liposomes with epitope penta-peptides. Liposome modified with APRPG-peptide showed high accumulation in murine tumor xenografts, and APRPG-modified liposome encapsulating adriamycin effectively suppressed experimental tumor growth. Finally, specific binding of APRPG-modified liposome to human umbilical endothelial cells, and that of PRP-containing peptide to angiogenic vessels in human tumors, i.e., islet cell tumor and glioblastoma, were demonstrated. The present study indicates the usefulness of APRPG-peptide as a tool for anti-neovascular therapy, a novel modality of cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1205347DOI Listing

Publication Analysis

Top Keywords

angiogenic vessels
16
anti-neovascular therapy
8
therapy novel
8
novel peptides
8
peptides homing
8
homing angiogenic
8
murine tumor
8
tumor xenografts
8
aprpg-modified liposome
8
tumor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!