Cell kinetics in tumour cords studied by a model with variable cell cycle length.

Math Biosci

Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185 Rome, Italy.

Published: June 2002

AI Article Synopsis

  • A mathematical model simulates how cell populations behave in a tumor cord structure, which is a cylindrical arrangement of tumor cells around a blood vessel and surrounded by dead tissue.
  • The model includes factors like cell migration from the inner to outer zones and incorporates different stages of the cell cycle, allowing for variations in how cells progress through these stages.
  • Results from the model are compared with experimental data, revealing that cell migrations significantly affect the evaluation of how quickly cells progress through the cycle as you move from the center to the edges of the tumor cord.

Article Abstract

A mathematical model is developed that describes the proliferative behaviour at the stationary state of the cell population within a tumour cord, i.e. in a cylindrical arrangement of tumour cells growing around a blood vessel and surrounded by necrosis. The model, that represents the tumour cord as a continuum, accounts for the migration of cells from the inner to the outer zone of the cord and describes the cell cycle by a sequence of maturity compartments plus a possible quiescent compartment. Cell-to-cell variability of cycle phase transit times and changes in the cell kinetic parameters within the cord, related to changes of the microenvironment, can be represented in the model. The theoretical predictions are compared against literature data of the time course of the labelling index and of the fraction of labelled mitoses in an experimental tumour after pulse labelling with 3H-thymidine. It is shown that the presence of cell migration within the cord can lead to a marked underestimation of the actual changes along cord radius of the kinetics of cell cycle progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0025-5564(01)00114-6DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
tumour cord
8
cell
7
cord
6
tumour
5
cell kinetics
4
kinetics tumour
4
tumour cords
4
cords studied
4
model
4

Similar Publications

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

In recent years, the transfer of more than one embryo has become less frequent to diminish multiple pregnancies. Even so, there is still a risk of one embryo splitting into two or even three. This report presents the case of a triamniotic monochorionic gestation in a 35-year-old woman, obtained after the transfer of a single day 5 embryo that had been previously hatched with a laser and subsequently transferred in a fresh IVF cycle.

View Article and Find Full Text PDF

Despite recent advances in cancer treatment, there is still a need for novel compounds with antineoplastic activity. Among 11 biphenyl-based organogold(III) -heterocyclic carbene (NHC) (BGC) complexes of general formula [(C^C)Au(NHC-pyr)X], where (C^C) = 4,4'-ditertbutylbiphenyl, X = Cl or phenylacetylide, and (NHC-pyr) is a pyridyl-substituted NHC ligand, the complex bearing a 4-CF-pyridyl substituent and a chloride ligand showed promising antineoplastic activity on the triple negative breast cancer cell line. was able to induce cell apoptosis but had no effect on the cell cycle.

View Article and Find Full Text PDF

Endosomes play a pivotal role in cellular biology, orchestrating processes such as endocytosis, molecular trafficking, signal transduction, and recycling of cellular materials. This study aims to construct an endosome-related gene (ERG)-derived risk signature for breast cancer prognosis. Transcriptomic and clinical data were retrieved from The Cancer Genome Atlas and the University of California Santa Cruz databases to build and validate the model.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!