Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

Biophys J

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.

Published: May 2002

Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302046PMC
http://dx.doi.org/10.1016/S0006-3495(02)75599-9DOI Listing

Publication Analysis

Top Keywords

relaxation rate
16
cardiac myocytes
12
gene transfer
12
mathematical modeling
12
optimal range
8
experimental mathematical
8
shortening-frequency relationship
8
[pv] relaxation
8
mechanical contraction
8
calcium transient
8

Similar Publications

Background: Using neuromuscular blocking agents (NMBA) in pediatric induction protocol is a challenging matter. Therefore, in this study, we aimed to find a safer way for anesthesia in children. We compared the effects of dexmedetomidine with atracurium on intubation conditions in children aged 6-12 years under general anesthesia.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated low-stress resin-based composites (RBCs) and their stress relaxation mechanisms, comparing them to an experimental low-stress thiourethane (TU) material.
  • The experimental composites included a mix of different dimethacrylates and barium aluminosilicate filler, with tests on polymerization kinetics and stress relaxation conducted using advanced analytical techniques.
  • Results indicated that TU-modified RBCs exhibited significantly higher polymerization conversion rates and stress reduction capabilities compared to traditional materials, with the TU composites and SDR Flow+ showing the most effective stress relaxation.
View Article and Find Full Text PDF

Background/aim: During hyperthermic intra-peritoneal chemotherapy (HIPEC), perfusion instability (PI) is defined as the inability to maintain a proper perfusion flow without impairment of the target temperature. The management and resolution of this adverse event is underreported and poorly investigated. The study aimed to evaluate the incidence of PI during closed cytoreductive surgery (CRS)-HIPEC and how a problem-solving approach might limit the effects of this adverse event.

View Article and Find Full Text PDF

Comparative Effects of Kapalbhati and Slow Deep Breathing on Heart Rate Variability: Mechanistic Insights into Sympathetic and Parasympathetic Dominance.

Mymensingh Med J

January 2025

Professor Dr Varun Malhotra, Additional Professor, Department of Physiology, AIIMS Bhopal, India; E-mail:

The autonomic nervous system governs rhythmic fluctuations in blood pressure and heart rate, which are influenced by breathing patterns. This study aims to explore how different breathing techniques, specifically Kapalbhati (fast-paced breathing) and Slow Deep Breathing (SDB), affect heart rate variability (HRV). This study was conducted in the Department of Physiology and AYUSH at AIIMS Bhopal, India and duration was 2 (Two) months from May 2021 to June 2021 This quasi-experimental study involved 60 participants divided into two groups: Kapalbhati and SDB.

View Article and Find Full Text PDF

Importance: The incidence of potentially inappropriate medication (PIM) prescribing among older adults is not as well studied as its prevalence. Estimates of factors associated with PIM incidence, such as patient age, sex, race-ethnicity, medication subsidy support, and comorbidity, are also limited.

Objective: To estimate the incidence of PIM prescribing in older adult outpatients, as well as the incidence and predictors for each PIM class, in a large outpatient electronic health records (EHR) cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!