Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/258450a0 | DOI Listing |
Crit Rev Biochem Mol Biol
December 2024
The Salk Institute for Biological Studies, La Jolla, California, USA.
This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.
Detecting viral infection is a key role of the innate immune system. The genomes of some RNA viruses have a high CpG dinucleotide content relative to most vertebrate cell RNAs, making CpGs a molecular marker of infection. The human zinc-finger antiviral protein (ZAP) recognizes CpG, mediates clearance of the foreign CpG-rich RNA, and causes attenuation of CpG-rich RNA viruses.
View Article and Find Full Text PDFImmunology
December 2024
Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
The story of nucleases begins on the ancient battlefields of early Earth, where simple bacteria fought to survive against viral invaders. Nucleases are enzymes that degrade nucleic acids, with restriction endonucleases emerging as some of the earliest defenders, cutting foreign DNA to protect their bacteria hosts. However, bacteria sought more than just defence.
View Article and Find Full Text PDFNat Biotechnol
December 2024
Full Circles Therapeutics, Cambridge, MA, USA.
The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture.
View Article and Find Full Text PDFNat Commun
December 2024
Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen Straße 25, 81377, Munich, Germany.
Human Schlafen 11 (SLFN11) is sensitizing cells to DNA damaging agents by irreversibly blocking stalled replication forks, making it a potential predictive biomarker in chemotherapy. Furthermore, SLFN11 acts as a pattern recognition receptor for single-stranded DNA (ssDNA) and functions as an antiviral restriction factor, targeting translation in a codon-usage-dependent manner through its endoribonuclease activity. However, the regulation of the various SLFN11 functions and enzymatic activities remains enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!