Dendritic cells (DCs) are recognized as the sole professional antigen-presenting cells capable of priming naive T cells of the helper and cytotoxic phenotypes. This property is presently exploited with success in vaccinal strategies against pathogens or tumor cells that otherwise escape immune recognition, but the repeated infusions of ex vivo expanded and sensitized DCs are usually required to achieve protection. In this paper, we demonstrate that liposomal antigens can efficiently relay and propagate the action of DCs, inducing a strong long-term response against their associated antigen. Their effect is mainly achieved by improving the ex vivo loading of DCs and by efficiently channeling the activation stimulus into the induction of effector function. This is demonstrated by the sustained immunoglobulin production as well as by the sustained lymphoproliferation and the increased cytokine secretion that can be achieved upon restimulation of DC-primed immune cells with limited amount of liposomal antigenic material. Being well-tolerated and easily prepared, liposomal antigens could therefore be expected to significantly contribute to the efficiency and to a more general utilization of the highly promising but rather cumbersome DC-based immunotherapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1567-5769(02)00004-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!