Download full-text PDF

Source
http://dx.doi.org/10.1159/000054744DOI Listing

Publication Analysis

Top Keywords

urea kinetics
4
kinetics 8-hour
4
8-hour hemodialysis
4
hemodialysis third
4
third slope
4
slope meaning
4
urea
1
8-hour
1
hemodialysis
1
third
1

Similar Publications

A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

Biosensors (Basel)

January 2025

CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.

View Article and Find Full Text PDF

A novel adsorbent ZnAl-LDHs/SiO (ZA/SiO) was prepared by blending urea mixture of ZnSO and Al(SO) while using SiO as a support form. The adsorption properties of ZA/SiO for the removal of toxic metal ions (Cu(II) and Cr(VI)) from water were evaluated. By batch experiment method to investigate the ZA/SiO adsorption of Cu(II) and Cr(VI) solution treatment effect.

View Article and Find Full Text PDF

The photoelectrochemical (PEC) urea oxidation reaction (UOR) presents a promising half-reaction for green hydrogen production, but the stable resonance structure of the urea molecule results in sluggish kinetics for breaking the C-N bond. Herein, we realize the record PEC UOR performance on a NiO-modified n-Si photoanode (NiO@Ni/n-Si) by harnessing the adsorbate-adsorbate interaction. We quantificationally unveil a dependence of the UOR activation barrier on the coverage of photogenerated surface high-valent Ni-oxo species (NiIV=O) by employing operando PEC spectroscopic measurements and theoretical simulations.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Electrocatalytic and Photocatalytic N Fixation Using Carbon Catalysts.

Nanomaterials (Basel)

January 2025

Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!