AI Article Synopsis

Article Abstract

Abnormal traffic of proteins through the glomerular capillary has an intrinsic toxicity that results in tubular dysfunction and interstitial inflammation. It has been previously shown that in porcine proximal tubular cells high concentrations of albumin activated NF-kappaB, which is responsible for the enhanced synthesis of the inflammatory chemokine RANTES. This study investigates whether reactive oxygen species (ROS) served as second messengers in protein overload-induced NF-kappaB activation. Human proximal tubular cells (HK-2) were incubated (5 to 60 min) with human albumin and IgG (1 to 30 mg/ml). Both proteins induced a rapid or significant increase in hydrogen peroxide (H(2)O(2)) production at 5 min and persisting at 60 min. This effect was dose-dependent. The contribution of H(2)O(2) in regulating NF-kappaB activation was evaluated by using the antioxidants dimethyl-thiourea and pyrrolidine dithiocarbamate in protein-overloaded HK-2 cells. Both agents, by preventing H(2)O(2) generation, induced human albumin or IgG inhibited NF-kappaB activation. Stimulation of HK-2 with exogenous H(2)O(2) resulted in the activation of a NF-kappaB subunit pattern similar to that obtained after protein challenge. Specific inhibitors of protein kinase C (PKC) activity significantly prevented H(2)O(2) production and consequent NF-kappaB activation, suggesting that ROS generation in HK-2 cells occurs downstream of PKC activation. Either antioxidants or PKC inhibitor almost completely abolished the upregulation of the monocyte chemoattractant protein-1 gene induced by excess albumin, as evaluated by real-time PCR, thus supporting a role for PKC and ROS as critical signals for the expression of NF-kappaB-dependent inflammatory genes. To identify the enzymatic sources responsible for the increased H(2)O(2) production, the effect of dyphenyleneiodonium, an inhibitor of the membrane NADP(H) oxidase, was studied, as was the effect of rotenone, which blocks complex I of the mitochondrial respiratory chain. It was found that both agents significantly reduced the exaggerated H(2)O(2) induced by protein overload. These data indicate that exposure to excess proteins in proximal tubular cells induces the formation of ROS, which are responsible for NF-kappaB activation and consequent induction of NF-kappaB-dependent inflammatory signals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nf-kappab activation
24
proximal tubular
16
tubular cells
16
h2o2 production
12
protein overload-induced
8
nf-kappab
8
overload-induced nf-kappab
8
activation
8
h2o2
8
human albumin
8

Similar Publications

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

Galectin-1-Induced Tumor Associated Macrophages Repress Antitumor Immunity in Hepatocellular Carcinoma Through Recruitment of Tregs.

Adv Sci (Weinh)

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs.

View Article and Find Full Text PDF

TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes.

Immun Inflamm Dis

January 2025

Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!