Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O(2)) with or without heparin (1,200 U x kg-1 x day-1) and/or the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME; 20 mg x kg-1 x day-1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, although L-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U x kg-1 x ml-1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2'-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered by L-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00664.2001DOI Listing

Publication Analysis

Top Keywords

vascular remodeling
16
pulmonary vascular
12
heparin
12
nitric oxide
8
remodeling heparin
8
hypoxia-induced pulmonary
8
kg-1 day-1
8
effects heparin
8
cgmp levels
8
smc proliferation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!