Converging lines of evidence support a role for the intermediate and deep layers of the superior colliculus (SC) and the mesencephalic reticular formation (MRF) in the control of combined head and eye movements (i.e., gaze). Recent microstimulation, single-cell recording, and lesion experiments are reviewed in which monkeys are free to move their heads. Cells in the SC discharge in advance of combined head and eye movements and most likely provide a gaze error signal to downstream structures. In contrast, the neurons in the MRF are of at least two types. Eye cells have features that are similar to neurons in the rostral portion of the SC, but fire before the onset of horizontal eye movments. A second group of MRF neurons begin to fire after the onset of the gaze shift and are most closely associated with movements of the head. The peak discharge of these late-onset MRF neurons occurs near the peak head velocity. Stimulation in the rostral SC generates eye movements with fixed amplitude and direction. A similar response is noted after stimulation of the more dorsal portion of the caudal MRF. Stimulation in the caudal portion of the SC produces combined head and eye movements of fixed amplitude. Electrical activation of the more ventral portions of the caudal MRF generates goal-directed and centering eye movements. Temporary inactivation of the SC with the GABA agonist muscimol generated hypometria and curved trajectories of contralateral eye movements. Inactivation of the caudal MRF produced contralateral hypermetria and ipsilateral hypometria of saccades. Release of the monkey's head demonstrated a profound contralateral head tilt. Taken together, these data suggest that the gaze signal generated in the SC is filtered by neurons in the MRF to generate a feedback signal of eye motor error. The head signal found in the MRF could cancel a portion of the gaze signal coming from the SC in the form of head velocity feedback.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.2002.tb02813.x | DOI Listing |
Epilepsia
January 2025
Division of Child Neurology, Stanford Medicine Children's Health, California, USA.
Objective: Seizures are a recognized complication of critical cardiovascular illness in infants and children. We assessed the diagnostic yield of continuous video-electroencephalography (cEEG) in a pediatric and neonatal cardiovascular intensive care unit (CVICU) by the symptoms and risk factors prompting cEEG evaluation.
Methods: This retrospective case series included all consecutive cEEGs in patients ≤21 years old performed in one CVICU over 38 months.
Data Brief
December 2024
Department of Neurophysics, Philipps University Marburg, Karl-von-Frisch Straße 8a, 35043 Marburg, Hesse, Germany.
We present a comprehensive dataset comprising head- and eye-centred video recordings from human participants performing a search task in a variety of Virtual Reality (VR) environments. Using a VR motion platform, participants navigated these environments freely while their eye movements and positional data were captured and stored in CSV format. The dataset spans six distinct environments, including one specifically for calibrating the motion platform, and provides a cumulative playtime of over 10 h for both head- and eye-centred perspectives.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.
This study investigated the relationship between eye movement parameters and cognitive function in patients with mild to moderate Alzheimer's disease (AD). A total of 80 patients with AD (mild and moderate) and 34 normal controls (NC) participated. Neuropsychological assessments were conducted using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), while eye movements were recorded using eye-tracking technology.
View Article and Find Full Text PDFActa Ophthalmol
January 2025
School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
Purpose: Previous animal studies have found a relationship between spatial frequency and myopia. New research in humans suggest that reduced high spatial content of the visual environment may be a contributing factor for myopia development. This study aims to review the literature and elucidate the potential biological mechanisms linking spatial frequency and myopia.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Psychology, Sapienza, University of Rome, Rome, Italy.
The complex interplay between low- and high-level mechanisms governing our visual system can only be fully understood within ecologically valid naturalistic contexts. For this reason, in recent years, substantial efforts have been devoted to equipping the scientific community with datasets of realistic images normed on semantic or spatial features. Here, we introduce VISIONS, an extensive database of 1136 naturalistic scenes normed on a wide range of perceptual and conceptual norms by 185 English speakers across three levels of granularity: isolated object, whole scene, and object-in-scene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!