Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heartwood formation is generally characterized by the accumulation of phenolic substances that increase the natural color and durability of wood. Although there is evidence that these substances are synthesized in aging sapwood cells, little is known about heartwood formation at the molecular level. We monitored seasonal changes in flavanol concentration across the stems of 23-year-old Juglans nigra L. trees by sampling growth rings extending from the differentiating xylem to the heartwood. We also analyzed expression of phenylpropanoid and flavonoid structural genes in these samples. In the sapwood-heartwood transition zone, flavanol accumulation was correlated with the transcription levels of the chalcone synthase (CHS) and flavanone 3-hydroxylase (F3H) genes. We also observed correlations between flavanol accumulation and the amount of dihydroflavonol 4-reductase (DFR) gene transcript in October, January and May. Although transcription of phenylalanine ammonia-lyase (PAL) and 4-coumarate:CoA ligase (4CL) genes did not correlate with flavanol accumulation, PAL genes were strongly expressed in the transition zone of samples collected in autumn, suggesting that their transcription in these tissues contributes to phenolic biosynthesis. Western immunoblotting showed that accumulation of CHS protein correlated with the amount of CHS gene transcript, whereas accumulation of PAL protein did not correlate with the the transcription levels PAL genes. Preliminary analyses revealed that PAL and CHS activities were higher in the transition zone than in the inner sapwood in autumn, winter, and spring. Thus, CHS activity could be regulated mainly at the transcriptional level, whereas post-translational modifications could modulate PAL activity. We conclude that flavanols are synthesized de novo in J. nigra sapwood cells that are undergoing transformation to heartwood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/22.5.291 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!