Many studies have demonstrated the nuclear forms of steroid receptors and their activities, while fewer investigators have identified and described the membrane forms of these receptors. Our immuno-identification approaches for the qualitative and quantitative comparison of the membrane form of the estrogen receptor-alpha (mER alpha) to its nuclear counterpart now allow us to address questions about the comparative levels and regulation of these receptor forms. ER alpha-specific antisense oligonucleotides eliminate mER alpha expression, while only mildly reducing the nuclear ER alpha. Success of immuno-identification for the mER alpha is very sensitive to different fixation protocols, affecting cell permeability (and thus distinction from the intracellular form) and differential epitope preservation. All such identifications must be accompanied by proof of cell membrane integrity and focal plane assessments. The mER alpha expression on selected cells declines rapidly with cell passage number and cell density. Expression of mER alpha is enhanced by serum starvation and selection for specific phases of the cell cycle. The hinge region of the protein is sensitive to ligand-induced epitope masking and to antibody-induced changes in receptor-mediated responses. Responsive cells are often diluted within cell populations by loss of the membrane receptor form. The bimodality of the rapid estrogen action, with inhibitory doses between picomolar and nanomolar stimulatory concentrations, requires detailed dose-response curves. Finally, responsive cells can be lost from assays, as upon estrogen treatment they rapidly round up and leave the substrates to which they are attached. These regulatory phenomena demonstrate that levels of the membrane form of the estrogen receptor are very dynamic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0039-128x(01)00172-6 | DOI Listing |
NPJ Vaccines
January 2025
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.
View Article and Find Full Text PDFMolecules
December 2024
Resolute Bio, 48 Dunham Rd., Suite 5400, Beverly, MA 01915, USA.
A systematic structure-activity and computational modeling analysis of a series of glucagon-like peptide-1 receptor (GLP-1R) agonists based upon an ultra-short GLP-1 peptide, H-His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Bip-Bip-NH2, was conducted. This highly potent 11-mer peptide led to a deeper understanding of the α-helical bias of strategic α-methylation within the linear parent template as well as optimization of GLP-1R agonist potency by 1000-fold. These data were correlated with previously reported co-structures of both full-length GLP-1 analogs and progenitor N-terminal GLP-1 fragment analogs related to such ultra-short GLP-1R agonist peptides.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.
View Article and Find Full Text PDFJ Med Chem
January 2025
Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, "KVLGRLV" human chemerin segment. Herein, we devised a new method of "sliding framework" with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, United States of America.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. While there is no curative treatment, the immune system's involvement with autoimmune T cells that recognize the protein alpha-synuclein (α-syn) in a subset of individuals suggests new areas for therapeutic strategies. As not all patients with PD have T cells specific for α-syn, we explored additional autoantigenic targets of T cells in PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!