N-[4-[1-Ethyl-2-(2,4-diaminofuro[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid 3 was designed and synthesized to investigate the effect of homologation of a C9-methyl to an ethyl on dihydrofolate reductase (DHFR) inhibition and on antitumor activity. Compound 3 was obtained via a concise seven step synthesis starting from palladium-catalyzed carbonylation of 4-propionylphenol, followed by a Wittig reaction with 2,4-diamino-5-(chloromethyl)furo[2,3-d]pyrimidine (6), catalytic hydrogenation, hydrolysis, and standard peptide coupling with diethyl L-glutamate. The biological results indicated that extending the C9-methyl group to an ethyl on the C8-C9 bridge region (analogue 3) doubled the inhibitory potency against recombinant human (rh) DHFR (IC(50) = 0.21 microM) as compared to the C9-methyl analogue 1 and was 4-fold more potent than the C9-H analogue 2. As compared to 1, compound 3 demonstrated increased growth inhibitory potency against several human tumor cell lines in culture with GI(50) values < 1.0 x 10(-8) M. Compound 3 was also a weak inhibitor of rh thymidylate synthase. Compounds 1 and 3 were efficient substrates of human folylpolyglutamate synthetase (FPGS). Further evaluation of the cytotoxicity of 3 in methotrexate-resistant CCRF-CEM cell sublines and metabolite protection studies implicated DHFR as the primary intracelluar target. Thus, alkylation of the C9 position in the C8-C9 bridge of the classical 5-substituted 2,4-diaminofuro[2,3-d]pyrimidine is highly conducive to DHFR and tumor inhibitory activity as well as FPGS substrate efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm010575m | DOI Listing |
Anal Lett
May 2016
Department of Applied Sciences, Northumbria University, Newcastle upon Tyne , UK.
A novel method for the determination of benzoic acid has been employed to identify carboxypeptidase activities in clinically relevant pathogens. Benzoic acid was determined after chemical derivatization by gas chromatography-mass spectrometry (GC-MS). N-Benzoyl amino acid substrates were evaluated for the detection of carboxypeptidase activities in a number of clinical pathogens.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2014
Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China. Electronic address:
In the present work, an exhaustive conformational search of N-[4-[[(2-amino-5-formyl-(6S)-3,4,5,6,7,8-hexahydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid disodium salt (L-SF) has been preformed. The optimized structure of the molecule, vibrational frequencies and NMR spectra studies have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (d, p) basis set. IR and FT-Raman spectra for L-SF have been recorded in the region of 400-4000 cm(-1) and 100-3500 cm(-1), respectively.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
October 2012
Laboratório de Remediação Ambiental, UNIVALI, Itajaí, Santa Catarina, Brasil.
Cytostatics are a major class of chemotherapy drugs with great potential to cause genotoxic and/or mutagenic effects in all organisms. Currently, hospital wastewater treatment systems (HWTS) are not able to remove these compounds and they are discharged to the environment. Thus, the objective of this study was to investigate the oxidative degradation of the cytostatic drugs doxorubicin (DOXO) [(8s,10s)-10-(4-amino-5-hydroxy-6-methyl-tetrahydro-2h-pyran-2-yloxy)-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione] and methotrexate (METHO) {N-[4-[[(2,4-diamino-6-pteridinyl)methyl]methylamino]benzoyl]-L-glutamic acid} by ozonolysis alone and using a combined sonolysis/ozonolysis process on bench-scale at different pH values.
View Article and Find Full Text PDFMol Pharmacol
October 2010
Graduate Program in Cancer Biology, Wayne State University School of Medicine, Detroit, Michigan, USA.
The proton-coupled folate transporter (PCFT) is a folate-proton symporter with an acidic pH optimum, approximating the microenvironments of solid tumors. We tested 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with one to six carbons in the bridge region for inhibition of proliferation in isogenic Chinese hamster ovary (CHO) and HeLa cells expressing PCFT or reduced folate carrier (RFC). Only analogs with three and four bridge carbons (N-{4-[3-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)propyl]benzoyl}-L-glutamic acid (compound 2) and N-{4-[4-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]benzoyl}*-L-glutamic acid (compound 3), respectively) were inhibitory, with 2 ≫ 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!