This study addresses the viability of sol-gel encapsulated HRP (HRP:sol-gel) as a recyclable solid-state catalytic material. Ferric, ferric-CN, ferrous, and ferrous-CO forms of HRP:sol-gel were investigated by resonance Raman and UV-visible methods. Electronic and vibrational spectroscopic changes associated with changes in spin state, oxidation state, and ligation of the heme in HRP:sol-gel were shown to correlate with those of HRP in solution, showing that the heme remains a viable ligand-binding complex. Furthermore, the high-valent HRP:sol-gel intermediates, compound I and compound II, were generated and identified by time-resolved UV-visible spectroscopy. Catalytic activity of the HRP:sol-gel material was demonstrated by enzymatic assays by using I(-), guaiacol, and ABTS as substrates. Encapsulated HRP was shown to be homogeneously distributed throughout the sol-gel host. Differences in turnover rates between guaiacol and I(-) implicate mass transport of substrate through the silicate matrix as a defining parameter in the peroxidase activity of HRP:sol-gel. HRP:sol-gel was reused as a peroxidation catalyst for multiple reaction cycles without loss of activity, indicating that such materials show promise as reusable catalytic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja012215u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!