A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. | LitMetric

A main issue for further clinical progress of cancer gene therapy is to develop technologies for efficient and specific delivery of therapeutic genes to tumor cells. In this work, we describe a photochemical treatment that substantially improves gene delivery by adenovirus, one of the most efficient gene delivery vectors known. Transduction of two different cell lines was studied by microscopy, flow cytometry, and an enzymatic assay, employing a beta-galactosidase-encoding adenovirus. The photochemical treatment induced a >20-fold increase in gene transduction, compared with conventional adenovirus infection, both when measured as the percentage of cells transduced, and when measured as the total beta-galactosidase activity in the cell population. The effect was most pronounced at lower virus doses, where in some cases the same transduction efficiency could be achieved with a 20 times lower virus dose than with conventional infection. Photochemical treatments are already in clinical use for cancer therapy, and generally are very specific and have few side effects. The photochemical internalization technology described thus has a clear potential for improving both the efficiency and the specificity of gene delivery in cancer gene therapy, making it possible to achieve efficient site-specific in vivo gene delivery by adenoviral vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7700447DOI Listing

Publication Analysis

Top Keywords

gene delivery
20
cancer gene
12
gene therapy
12
gene
10
efficient specific
8
photochemical treatment
8
lower virus
8
delivery
6
light-induced adenovirus
4
adenovirus gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!