Positioning protein molecules on surfaces: a nanoengineering approach to supramolecular chemistry.

Proc Natl Acad Sci U S A

Department of Chemistry, University of California, Davis, CA 95616, USA.

Published: April 2002

We discuss a nanoengineering approach for supramolecular chemistry and self assembly. The collective properties and biofunctionalities of molecular ensembles depend not only on individual molecular building blocks but also on organization at the molecular or nanoscopic level. Complementary to "bottom-up" approaches, which construct supramolecular ensembles by the design and synthesis of functionalized small molecular units or large molecular motifs, nanofabrication explores whether individual units, such as small molecular ligands, or large molecules, such as proteins, can be positioned with nanometer precision. The separation and local environment can be engineered to control subsequent intermolecular interactions. Feature sizes as small as 2 x 4 nm(2) (32 alkanethiol molecules) are produced. Proteins may be aligned along a 10-nm-wide line or within two-dimensional islands of desired geometry. These high-resolution engineering and imaging studies provide new and molecular-level insight into supramolecular chemistry and self-assembly processes in bioscience that are otherwise unobtainable, e.g., the influence of size, separation, orientation, and local environment of reaction sites. This nanofabrication methodology also offers a new strategy in construction of two- and three-dimensional supramolecular structures for cell, virus, and bacterial adhesion, as well as biomaterial and biodevice engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122740PMC
http://dx.doi.org/10.1073/pnas.072695699DOI Listing

Publication Analysis

Top Keywords

supramolecular chemistry
12
nanoengineering approach
8
approach supramolecular
8
small molecular
8
local environment
8
molecular
6
supramolecular
5
positioning protein
4
protein molecules
4
molecules surfaces
4

Similar Publications

Kinetic Control of Self-Assembly Pathway in Dual Dynamic Covalent Polymeric Systems.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.

Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.

View Article and Find Full Text PDF

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

Fluoride binding-modulated supramolecular chirality of urea-containing triarylamine and its photo-manifestation.

Nanoscale

January 2025

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.

In recent years, the regulation of anion-mediated chiral assemblies has gained significant interest. This study investigated the modulation of supramolecular chiroptical signals and chiral assembled structures in a triarylamine system containing a urea moiety through fluoride ion-urea bond interactions, aiming to understand the chiral sense amplification in supramolecular assemblies. Chiral triarylamine derivatives containing urea or amide units were synthesized and the self-assemblies were examined in the absence and presence of fluoride ions.

View Article and Find Full Text PDF

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!