Lysosomal destabilization in p53-induced apoptosis.

Proc Natl Acad Sci U S A

Pathology II, Linköping University, Linköping 581 85, Sweden.

Published: April 2002

The tumor suppressor wild-type p53 can induce apoptosis. M1-t-p53 myeloid leukemic cells have a temperature-sensitive p53 protein that changes its conformation to wild-type p53 after transfer from 37 degrees C to 32 degrees C. We have now found that these cells showed an early lysosomal rupture after transfer to 32 degrees C. Mitochondrial damage, including decreased membrane potential and release of cytochrome c, and the appearance of apoptotic cells occurred later. Lysosomal rupture, mitochondrial damage, and apoptosis were all inhibited by the cytokine IL-6. Some other compounds can also inhibit apoptosis induced by p53. The protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited the decrease in mitochondrial membrane potential and cytochrome c release, the Ca(2+)-ATPase inhibitor thapsigargin inhibited only cytochrome c release, and the antioxidant butylated hydroxyanisole inhibited only the decrease in mitochondrial membrane potential. In contrast to IL-6, these other compounds that inhibited some of the later occurring mitochondrial damage did not inhibit the earlier p53-induced lysosomal damage. The results indicate that apoptosis is induced by p53 through a lysosomal-mitochondrial pathway that is initiated by lysosomal destabilization, and that this pathway can be dissected by using different apoptosis inhibitors. These findings on the induction of p53-induced lysosomal destabilization can also help to formulate new therapies for diseases with apoptotic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122941PMC
http://dx.doi.org/10.1073/pnas.092135599DOI Listing

Publication Analysis

Top Keywords

lysosomal destabilization
12
mitochondrial damage
12
membrane potential
12
wild-type p53
8
transfer degrees
8
lysosomal rupture
8
il-6 compounds
8
apoptosis induced
8
induced p53
8
inhibited decrease
8

Similar Publications

Triple-Negative Breast Cancer Aptamer-Targeting Porous Silicon Nanocarrier.

ACS Appl Mater Interfaces

January 2025

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.

Common treatment approaches for triple-negative breast cancer (TNBC) are associated with severe side effects due to the unfavorable biodistribution profile of potent chemotherapeutics. Here, we explored the potential of TNBC-targeting aptamer-decorated porous silicon nanoparticles (pSiNPs) as targeted nanocarriers for TNBC. A "salt-aging" strategy was employed to fabricate a TNBC-targeting aptamer functionalized pSiNP that was highly colloidally stable.

View Article and Find Full Text PDF

Integration of responses to lithium in mussels at different levels of biological complexity.

Chemosphere

January 2025

CBET + Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, University of the Basque Country UPV/EHU, Areatza z/g, 48620, Plentzia, Bizkaia, Spain. Electronic address:

The increasing use of lithium (Li) in modern technology and medicine has raised up concerns in the scientific community due to the potential impact of this metal on the aquatic environment. Although several effects have been reported in different organisms, there is still scarce information concerning the mechanisms and chronic effects of Li toxicity in marine life. Our main objective is to determine biological effects of sub-lethal concentrations in Mytilus galloprovincialis at different biological organization levels using the biomarker approach.

View Article and Find Full Text PDF

Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis. Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.

View Article and Find Full Text PDF

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

The ATAC complex represses the transcriptional program of the autophagy-lysosome pathway via its E3 ubiquitin ligase activity.

Cell Rep

December 2024

Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China. Electronic address:

The Ada two A-containing (ATAC) complex, containing histone acetyltransferases general control non-derepressible 5 (GCN5) or p300/CBP-associated factor (PCAF), has gained recognition as a prominent transcriptional coactivator. Recent revelations unveiled E3 ligase activity present in both GCN5 and PCAF; however, how the dual enzymatic activities of the ATAC complex orchestrate distinct transcriptional programs and signaling networks remains largely elusive. Our study unveils the function of the ATAC complex as a negative regulator of the autophagy-lysosome pathway's transcriptional program by modulating the stability of transcription factors TFE3 and TFEB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!