Posttranslational modification of histones has emerged as a key regulatory signal in eukaryotic gene expression. Recent genetic and biochemical studies link H3-lysine 9 (H3-K9) methylation to HP1-mediated heterochromatin formation and gene silencing. However, the mechanisms that target and coordinate these activities to specific genes is poorly understood. Here we report that the KAP-1 corepressor for the KRAB-ZFP superfamily of transcriptional silencers binds to SETDB1, a novel SET domain protein with histone H3-K9-specific methyltransferase activity. Although acetylation and phosphorylation of the H3 N-terminal tail profoundly affect the efficiency of H3-K9 methylation by SETDB1, we found that methylation of H3-K4 does not affect SETDB1-mediated methylation of H3-K9. In vitro methylation of the N-terminal tail of histone H3 by SETDB1 is sufficient to enhance the binding of HP1 proteins, which requires both an intact chromodomain and chromoshadow domain. Indirect immunofluoresence staining of interphase nuclei localized SETDB1 predominantly in euchromatic regions that overlap with HP1 staining in nonpericentromeric regions of chromatin. Moreover, KAP-1, SETDB1, H3-MeK9, and HP1 are enriched at promoter sequences of a euchromatic gene silenced by the KRAB-KAP-1 repression system. Thus, KAP-1 is a molecular scaffold that is targeted by KRAB-ZFPs to specific loci and coordinates both histone methylation and the deposition of HP1 proteins to silence gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152359 | PMC |
http://dx.doi.org/10.1101/gad.973302 | DOI Listing |
J Biol Chem
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, India. Electronic address:
Long Interspersed Nuclear Element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK. Electronic address:
The Human Silencing Hub (HUSH) guards the genome from the pathogenic effects of retroelement expression. Composed of MPP8, TASOR, and Periphilin-1, HUSH recognizes actively transcribed retrotransposed sequences by the presence of long (>1.5-kb) nascent transcripts without introns.
View Article and Find Full Text PDFEur J Hum Genet
November 2024
Leeds Institute of Medical Research, University of Leeds, St James University Hospital, Beckett Street, Leeds, UK.
Congenital heart disease (CHD) describes a structural cardiac defect present from birth. A cohort of participants recruited to the 100,000 Genomes Project (100 kGP) with syndromic CHD (286 probands) and familial CHD (262 probands) were identified. "Tiering" following genome sequencing data analysis prioritised variants in gene panels linked to participant phenotype.
View Article and Find Full Text PDFClin Cancer Res
July 2024
Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
Purpose: Diffuse pleural mesotheliomas (DPM) with genomic near-haploidization (GNH) represent a novel subtype first recognized by The Cancer Genome Atlas project; however, its clinicopathologic and molecular features remain poorly defined.
Experimental Design: We analyzed clinical genomic profiling data from 290 patients with DPM using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay. Allele-specific copy number analysis was performed using the Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) algorithm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!