A point mutation of G to C at codon 693 of the amyloid-beta (Abeta) precursor protein gene results in Glu to Gln substitution at position 22 of the Abeta (AbetaQ22) associated with hereditary cerebrovascular amyloidosis with hemorrhage Dutch type. Factors that regulate AbetaQ22 levels in the central nervous system (CNS) are largely unknown. By using ventriculo-cisternal perfusion technique in guinea pigs, we demonstrated that clearance from the cerebrospinal fluid and transport from the CNS to blood of [(125)I]-AbetaQ22 (1 nM) were reduced by 36% and 52%, respectively, in comparison to the wild type Abeta(1-40) peptide. In contrast to significant uptake and transport of Abeta(1-40) across the brain capillaries and leptomeningeal vessels, AbetaQ22 was not taken up at these CNS vascular transport sites, which was associated with its 53% greater accumulation in the brain. The CNS clearance of Abeta(1-40) was half-saturated at 23.6 nM; AbetaQ22 had about 6.8-fold less affinity for the CNS efflux transporters and its elimination relied mainly on transport across the choroid plexus. Thus, the Dutch mutation impairs elimination of Abeta from brain by reducing its rapid transport across the blood-brain barrier and the vascular drainage pathways, which in turn may result in accumulation of the peptide around the blood vessels and in brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0197-4580(01)00317-7DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
8
central nervous
8
nervous system
8
transport
6
cns
5
substitution codon
4
codon reduces
4
reduces clearance
4
clearance alzheimer's
4
alzheimer's amyloid-beta
4

Similar Publications

A 65-year-old woman with Multiple Sclerosis treated with fingolimod developed headaches and convulsions. Cerebrospinal fluid (CSF) culture indicated . A literature review of 20 cases of cryptococcal meningitis indicated that headache was the most common initial symptom, and all cases were positive for serum and/or CSF cryptococcal antigens.

View Article and Find Full Text PDF

Autoimmune cerebellar ataxia (ACA) is a cerebellar syndrome induced by autoimmune reactions and its onset is induced by malignant tumors, prodromic infection, and gluten allergy. Its clinical symptoms include gait disorder, limb ataxia, dysarthria, and dysphagia. According to , the diagnosis of ACA is based on the following points: 1.

View Article and Find Full Text PDF

Background: Although Amyloid-beta and Tau are the hallmarks of Alzheimer's Disease (AD), other protein pathways such as endothelial dysfunction may be involved and may precede cognitive symptoms. Our objective was to characterize the cerebrospinal fluid (CSF) proteomic profiles focusing on cardiometabolic-related protein pathways in individuals on the AD spectrum.

Methods: We performed CSF and plasma-targeted proteomics (276 proteins) from 354 participants of the Brain Stress Hypertension and Aging Program (BSHARP), of which 8% had preclinical AD, and 24% had MCI due to AD.

View Article and Find Full Text PDF

Background: Recent studies have shown that cerebrospinal fluid (CSF) levels of soluble triggering receptor expressed on myeloid cells 1 (sTREM1) are elevated in individuals with Alzheimer's disease (AD), though the relationship between CSF sTREM1 and hippocampal atrophy remains to be elucidated. The primary aim of this study was to investigate the association between CSF sTREM1 levels and longitudinal changes in hippocampal volumes, and to determine if this relationship is moderated by cognitive status.

Methods: We included 576 participants, comprising 152 cognitively unimpaired (CU) and 424 cognitively impaired (CI) individuals.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a severe disease of the central nervous system (CNS) characterized by motor neuron damage leading to death from respiratory failure. The neurodegenerative process in ALS is characterized by an accumulation of aberrant proteins (TDP-43, SOD1, etc.) in CNS cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!