Polyphosphate produced in recombinant Escherichia coli confers mercury resistance.

FEMS Microbiol Lett

Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, 573-0101, Osaka, Japan.

Published: February 2002

An Escherichia coli strain was generated by fusion of a merA-deleted broad-spectrum mer operon from Pseudomonas K-62 with a bacterial polyphosphate kinase gene (ppk) from Klebsiella aerogenes in vector pUC119. A large amount of the ppk-specified polyphosphate was identified in the mercury-induced bacterium with the fusion plasmid designated pMKB18 but not in the cells without mercury induction. These results suggest that the synthesis of polyphosphate as well as the expression of the mer genes is mercury-inducible and regulated by merR. The E. coli strain with pMKB18 was more resistant to both Hg2+ and C6H5Hg+ than its isogenic strain with cloning vector pUC119. The recombinant strain accumulated more mercury from Hg2+- and C6H5Hg+-contaminated medium. Hg2+ transported into the cytoplasm appeared to be bound by chelation with the polyphosphate produced by the recombinant cells. The transported phenylmercury was degraded to Hg2+ before the chelation since polyphosphate did not directly chelate with C6H5Hg+. These results indicate that polyphosphate is capable of reducing the cytotoxicity of the transported Hg2+ probably via chelation between polyphosphate and Hg2+.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11045.xDOI Listing

Publication Analysis

Top Keywords

chelation polyphosphate
12
polyphosphate
8
polyphosphate produced
8
produced recombinant
8
escherichia coli
8
coli strain
8
vector puc119
8
hg2+ chelation
8
hg2+
5
recombinant escherichia
4

Similar Publications

Herein we present a series of luminescent Tb(III)-probes ([Tb-Ltrp], [Tb-Ltyr], and [Tb-Lphe]) for sensing and discriminating purine nucleoside polyphosphates (NPP) based on a modified DTTA chelator appended to aromatic amino acids (Laa). The optically most effective luminescent [Tb-Ltrp] probe preferentially discriminates the guanine-NPPs over the adenine-NPPs PeT-based modulation of Tb(III) luminescence within the biological concentration range.

View Article and Find Full Text PDF

Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in .

Microorganisms

December 2024

Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.

Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In , polyphosphates also function as inorganic molecular chaperones.

View Article and Find Full Text PDF

Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes.

View Article and Find Full Text PDF
Article Synopsis
  • Inositol hexakisphosphate (InsP) is a strong binder of bivalent cations, particularly magnesium inside cells and calcium outside.
  • To prevent harmful calcium-InsP complexes from forming in the bloodstream, mammals need an effective InsP phosphatase.
  • The study identifies Multiple Inositol Polyphosphate Phosphatase 1 (MINPP1) as the main InsP phosphatase found in human plasma.
View Article and Find Full Text PDF

The objective of this in vitro study was to assess the efficacy of CaneCPI-5, either alone or in combination with various concentrations of sodium trimetaphosphate (TMP) in protecting against initial enamel erosion. A total of 135 bovine enamel specimens were prepared and categorized into nine groups (n/group=15) according to the following treatments: Deionized water; Commercial solution (Elmex Erosion ProtectionTM); 0.1 mg/mL CaneCPI-5; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!