Neurons expressing the preprotachykinin A gene, which encodes the sequences of substance P, neurokinin A, neuropeptide gamma and neuropeptide K, exemplify peptide co-existence. Furthermore, there is also evidence that substance P fragments have biological activity. However, the relative contribution of each of these peptides to tachykinin signalling is still poorly understood. An important factor which will determine the characteristics of the signal mediated by co-localised peptides is their clearance from the extracellular space. The striatum, in which tachykinins are present and exert neuromodulatory roles, can be used as a model to investigate this aspect. Therefore, in this study we characterised in vivo in the striatum the metabolism and clearance of substance P and of the other three co-expressed peptides. After intrastriatal administration of 1 pmol, tritiated substance P disappeared too rapidly for metabolites to be detected. However, when 10 nmol substance P and 1 pmol tritiated substance P were co-injected, substance P(1-4) and substance P(1-7), which are biologically active, were detected as major metabolites. Under these conditions, the rate of decay of tritiated substance P was 0.2 nmol/min. The effects of the peptidase inhibitors thiorphan, bestatin and captopril suggested that neutral endopeptidase 24.11 and aminopeptidases were involved in primary substance P cleavages, whereas angiotensin-converting enzyme was involved in secondary cleavages. The monitoring of the decay of unlabelled substance P by high-performance liquid chromatography gave a rate of 0.16 nmol/min. Using high-performance liquid chromatography with capillary electrophoresis, the rates of decay of 10 nmol neurokinin A or neuropeptide gamma were five and seven times faster than that of substance P. In contrast, over the time course of the experiment, no significant decay of neuropeptide K was detected. These results show that substance P disappears rapidly from the extracellular space, and supports the formation in vivo of major N-terminal active substance P metabolites. Our study also highlights significant differences in the clearance of co-expressed tachykinins and suggests that certain species may disappear relatively slowly from the extracellular space, and thus may make a significant temporal and spatial contribution to signalling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(01)00530-9 | DOI Listing |
Curr Top Behav Neurosci
January 2025
Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.
Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design.
View Article and Find Full Text PDFCurr HIV/AIDS Rep
January 2025
Columbia University Irving Medical School, New York, NY, USA.
Purpose: This narrative review addresses post-2020, specific, complex challenges for use of and adherence to pre-exposure prophylaxis (PrEP) for HIV prevention among out-of-treatment people who use drugs (PWUD) at syringe services programs (SSPs).
Recent Findings: The COVID-19 pandemic and its associated changes to the provision of healthcare have significantly impacted HIV prevention, especially for PWUD. Through a synthesis of literature and clinical experience, we (1) characterize the operational changes imposed by the pandemic on SSPs that shaped the current HIV prevention landscape; (2) describe three levels of current challenges for PWUD, including consumer attitudes, non-medical and medical provider attitudes, and structural and scalability barriers; (3) characterize current models for PrEP in SSPs; and (4) offer practical recommendations for HIV prevention in harm reduction programs.
Aging Dis
January 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway.
Alzheimer's disease (AD) is marked by extracellular beta-amyloid (Aβ) plaques and intracellular Tau tangles, leading to progressive cognitive decline and neuronal dysfunction. Impaired autophagy, a process by which a cell breaks down and destroys damaged or abnormal proteins and other substances, contributes to AD progression. This study investigated Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) as a potential therapeutic target for modulating autophagy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!