Gene expression in neurones can vary in response to neuronal activation. In this study, to analyse the spatio-temporal dynamics of the transcriptional response of three genes following the induction of long-term potentiation within the entire dentate gyrus in vivo, two new complementary approaches based on in situ hybridisation were developed: three-dimensional reconstruction of the pattern of mRNA expression within the entire dentate gyrus; and radioactive co-detection of two mRNA species allowing quantification of two different mRNAs in the same brain section. Zif268, Homer and syntaxin 1B genes were studied, and their regulated expression was examined three times after the induction of long-term potentiation. Constitutive expression of each gene under control conditions was homogeneous, but the spatial distribution of mRNA was heterogeneous along the rostro-caudal axis of the dentate gyrus following the induction of long-term potentiation, and different for each gene. In addition, the intensity of each gene-specific pattern of expression varied over time following the induction of long-term potentiation. Our results reveal that long-term potentiation differentially modulates the expression of mRNA species in cells of the dentate gyrus depending on their position along the rostro-caudal axis, on the gene and on time. We suggest that there are several molecular mechanisms of long-term potentiation, differing from one cluster of cells of the dentate gyrus to another, or that the different signaling pathways involved in long-term potentiation are used with varying efficiencies by different cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(01)00491-2 | DOI Listing |
Mol Psychiatry
January 2025
Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.
View Article and Find Full Text PDFCureus
January 2025
Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR.
Background: Obsessive-compulsive disorder (OCD) is a complex condition marked by persistent distressing thoughts and repetitive behaviours. Despite its prevalence, the mechanisms behind OCD remain elusive, and current treatments are limited. This protocol outlines an investigative study for individuals with OCD, exploring the potential of psilocybin to improve key components of cognition implicated in the disorder.
View Article and Find Full Text PDFBiomaterials
January 2025
144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. Electronic address:
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!