Phylogenetic relationships among the NBS-LRR (nucleotide binding site-leucine-rich repeat) resistance gene homologues (RGHs) from 30 genera and nine families were evaluated relative to phylogenies for these taxa. More than 800 NBS-LRR RGHs were analyzed, primarily from Fabaceae, Brassicaceae, Poaceae, and Solanaceae species, but also from representatives of other angiosperm and gymnosperm families. Parsimony, maximum likelihood, and distance methods were used to classify these RGHs relative to previously observed gene subfamilies as well as within more closely related sequence clades. Grouping sequences using a distance cutoff of 250 PAM units (point accepted mutations per 100 residues) identified at least five ancient sequence clades with representatives from several plant families: the previously observed TIR gene subfamily and a minimum of four deep splits within the non-TIR gene subfamily. The deep splits in the non-TIR subfamily are also reflected in comparisons of amino acid substitution rates in various species and in ratios of nonsynonymous-to-synonymous nucleotide substitution rates ( K(A)/ K(S) values) in Arabidopsis thaliana. Lower K(A)/ K(S) values in the TIR than the non-TIR sequences suggest greater functional constraints in the TIR subfamily. At least three of the five identified ancient clades appear to predate the angiosperm-gymnosperm radiation. Monocot sequences are absent from the TIR subfamily, as observed in previous studies. In both subfamilies, clades with sequences separated by approximately 150 PAM units are family but not genus specific, providing a rough measure of minimum dates for the first diversification event within these clades. Within any one clade, particular taxa may be dramatically over- or underrepresented, suggesting preferential expansions or losses of certain RGH types within particular taxa and suggesting that no one species will provide models for all major sequence types in other taxa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s0023901-0057-2 | DOI Listing |
Front Plant Sci
November 2024
College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China.
Introduction: NBS-LRR genes (NLRs) are the most extensive category of plant resistance genes (R genes) and play a crucial role in pathogen defense. Understanding the diversity and evolutionary dynamics of NLRs in different plant species is essential for improving disease resistance. This study investigates the NLR gene family in eight diploid wild strawberry species to explore their structural characteristics, evolutionary relationships, and potential for enhancing disease resistance.
View Article and Find Full Text PDFFront Plant Sci
April 2023
Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Fusarium wilt caused by f. sp. () is the most devastating disease of lentil present worldwide.
View Article and Find Full Text PDFImmunol Cell Biol
April 2022
Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
Toll-like receptor (TLR) signaling relies on Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor proteins that recruit downstream signaling molecules to generate tailored immune responses. In addition, the palmitoylated transmembrane adaptor protein family member Scimp acts as a non-TIR-containing adaptor protein in macrophages, scaffolding the Src family kinase Lyn to enable TLR phosphorylation and proinflammatory signaling responses. Here we report the existence of a smaller, naturally occurring translational variant of Scimp (Scimp TV1), which is generated through leaky scanning and translation at a downstream methionine.
View Article and Find Full Text PDFMol Genet Genomics
January 2022
College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P.
View Article and Find Full Text PDFPlanta
November 2020
Department of Botany, Narajole Raj College, Narajole, Paschim Medinipur, 721211, West Bengal, India.
In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!