AI Article Synopsis

Article Abstract

We purified two small, acidic calcium-binding proteins (Paramecium Ca(2+)-binding proteins, PCBP-25alpha and PCBP-25beta) from Paramecium tetraurelia by Ca(2+)-dependent chromatography on phenyl-Sepharose and by anion-exchange chromatography. The proteins were immunologically distinct. Monoclonal antibodies against PCBP-25beta did not react with PCBP-25alpha, and antibodies against centrin from Chlamydomonas reacted with PCBP-25alpha but not with PCBP-25beta. Like the centrins described previously, both PCBPs were associated with the infraciliary lattice (ICL), a fibrillar cytoskeletal element in Paramecium. Both were also present in isolated cilia, from which they could be released (with dynein) by a high-salt wash, and both PCBPs cosedimented with dynein in a sucrose gradient. PCBP-25beta was especially prominent in cilia and in the deciliation supernatant, a soluble fraction released during the process of deciliation. The results of immunoreactivity and localization experiments suggest that PCBP-25alpha is a Paramecium centrin and that PCBP-25beta is a distinct Ca(2+)-binding protein that confers Ca(2+) sensitivity on some component of the cilium, ciliary basal body or ICL. We characterized these proteins and Paramecium calmodulin as substrates for two Ca(2+)-dependent protein kinases purified from Paramecium. PCBP-25alpha and calmodulin were in vitro substrates for one of the two Ca(2+)-dependent protein kinases (CaPK-2), but only PCBP-25alpha was phosphorylated by CaPK-1. These results raise the possibility that the biological activities of PCBP-25alpha and calmodulin are regulated by phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.115.9.1973DOI Listing

Publication Analysis

Top Keywords

ca2+-dependent protein
12
protein kinases
12
ca2+-binding proteins
8
infraciliary lattice
8
paramecium tetraurelia
8
kinases purified
8
proteins paramecium
8
pcbp-25alpha pcbp-25beta
8
substrates ca2+-dependent
8
pcbp-25alpha calmodulin
8

Similar Publications

The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.

View Article and Find Full Text PDF

Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.

View Article and Find Full Text PDF

Glutamate transporter activator LDN-212320 prevents chronic pain-induced cognitive impairment and anxiety-like behaviors in a mouse model.

Behav Brain Res

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA. Electronic address:

The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!