Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin and to leptin. Importantly, DGAT1 deficiency protects against insulin resistance and obesity in agouti yellow mice, a model of severe leptin resistance. In contrast, DGAT1 deficiency did not affect energy and glucose metabolism in leptin-deficient (ob/ob) mice, possibly due in part to a compensatory upregulation of DGAT2 expression in the absence of leptin. Our results suggest that inhibition of DGAT1 may be useful in treating insulin resistance and leptin resistance in human obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150948PMC
http://dx.doi.org/10.1172/JCI14672DOI Listing

Publication Analysis

Top Keywords

insulin leptin
8
dgat1 deficiency
8
insulin resistance
8
leptin resistance
8
leptin
5
mice
5
increased insulin
4
leptin sensitivity
4
sensitivity mice
4
mice lacking
4

Similar Publications

Preclinical development of a standardized extract of Ilex paraguariensis A.St.-Hil for the treatment of obesity and metabolic syndrome.

Pharmacol Res

January 2025

Centro de Inovação e Ensaios Pré-Clínicos. Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000 Florianópolis, Santa Catarina, Brazil. Electronic address:

Obesity is a global epidemic often associated with serious medical complications such as diabetes, hypertension and metabolic dysfunction-associated steatohepatitis. Considering the multifactorial nature of these diseases, medicinal plants could be a valuable therapeutic strategy as their phytoconstituents interact with multiple and relevant biological targets. In this context, Ilex paraguariensis emerges as a potential alternative to treat obesity and associated metabolic diseases since several studies have demonstrated its anti-inflammatory, anti-obesity and anti-diabetic effects.

View Article and Find Full Text PDF

Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder.

Brain Behav Immun Health

February 2025

Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.

Purpose: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) poses a significant risk for developing type 2 diabetes mellitus (T2D) and exhibits heterogeneity. However, understanding the link between different types of post-GDM individuals without diabetes and their progression to T2D is crucial to advance personalised medicine approaches.

Materials And Methods: We employed a discovery-based unsupervised machine learning clustering method to generate clustering models for analysing metabolomics, clinical, and biochemical datasets.

View Article and Find Full Text PDF

Background: Medications targeting the leptin and Apolipoprotein CIII (APOC3) pathways are currently under development for the treatment of hypertriglyceridaemia. Given that both pathways are implicated in triglyceride regulation, it is unknown whether they function independently or interact under physiological conditions and under acute or long-term energy deficiency.

Methods: APOC3 levels and their association with circulating lipids and lipoproteins were evaluated in the context of two randomised controlled studies.

View Article and Find Full Text PDF

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!