Spinal muscular atrophy results from the loss of functional survival motor neuron (SMN1) alleles. Two nearly identical copies of SMN exist and differ only by a single non-polymorphic C to T transition in exon 7. This transition leads to alteration of exon 7 splicing; that is, SMN1 produces a full-length transcript, whereas SMN2 expresses a low level of full-length transcript and predominantly an isoform lacking exon 7. The truncated transcript of SMN encodes a less stable protein with reduced self-oligomerization activity that fails to compensate for the loss of SMN1. In this paper, we identified a cis-acting element (element 1), which is composed of 45 bp in intron 6 responsible for the regulation of SMN exon 7 splicing. Mutations in element 1 or treatment with antisense oligonucleotides directed toward element 1 caused an increase in exon 7 inclusion. An approximately 33-kDa protein was demonstrated to associate with a pre-mRNA sequence containing both element 1 and the C to T transition in SMN exon 7 but not with the sequence containing mutated element 1, suggesting that the binding of the approximately 33-kDa protein plays crucial roles in the skipping of SMN exon 7 containing the C to T transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M200851200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!