We measured the binding of IGF-I and IGF-II to recombinant human N-terminal [residues 1-97; recombinant human IGF-binding protein-3(1-97) (rhIGFBP-3(1-97))] and C-terminal (residues 98-264; rhIGFBP-3(98-264)) IGFBP-3 fragments and compared it with IGF binding to intact IGFBP-3 using biosensor analysis. Experiments were carried out in different configurations, either with binding protein or fragment immobilized or with IGF immobilized. These experiments showed that IGF-I and IGF-II bind to IGFBP-3 with affinities of 4-5 x 10(9) M(-1) and similar binding kinetics. The affinities of both rhIGFBP-3(1-97) and rhIGFBP-3(98-264) for IGF proteins were approximately 3 orders of magnitude less than that of full-length IGFBP-3. These results further support the concept that high affinity binding of IGF to IGF-binding proteins results from a two-site interaction of IGF with both the N- and C-terminal regions of the binding protein. Binding of insulin to IGFBP-3 and its N- and C-terminal fragments and of IGF-I and IGF-II to the structurally related proteins mac25 and connective tissue growth factor was also investigated. Weak insulin binding to full-length IGFBP-3 could be demonstrated in a few experiments, but we found that binding of IGF-I, IGF-II, and insulin to mac25 or connective tissue growth factor was below the detection limit of the biosensor instrument.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo.143.5.8760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!