Structural insights into the interactions between human IgE and its high affinity receptor FcepsilonRI.

Mol Immunol

Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA.

Published: May 2002

The interaction of IgE antibodies with the high affinity IgE receptor, FcepsilonRI, is a key step in the initiation of anti-parasitic immunity and allergic reactions. Recent structural studies of the receptor, the IgE-Fc and the IgE-Fc:FcepsilonRI complex have revealed how these two proteins interact to prime mast cell responses to antigen. The structures have revealed a novel arrangement for the FcepsilonRI ectodomains that is also observed in homologous members of this antibody receptor family. The crystal structure of the IgE-Fc:FcepsilonRI complex clarified how a 1:1 complex between the antibody and receptor is formed, with the receptor binding each chain of the antibody Fc dimer. The IgE-Fc structure in the absence of the receptor revealed the potential for large conformational rearrangements within the IgE that may affect receptor binding. These studies provide the basis for further investigation of the specificity of antibody:receptor binding and for the development of new treatments for allergic hypersensitivities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0161-5890(02)00035-4DOI Listing

Publication Analysis

Top Keywords

high affinity
8
receptor
8
receptor fcepsilonri
8
ige-fcfcepsilonri complex
8
antibody receptor
8
receptor binding
8
structural insights
4
insights interactions
4
interactions human
4
ige
4

Similar Publications

Target-regulated AgS/FeOOH heterojunction activity: a direct label-free photoelectrochemical immunosensor.

Mikrochim Acta

January 2025

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.

Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.

View Article and Find Full Text PDF

Clavibacter michiganensis (Cmm), designated as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO), incites bacterial canker of tomato, which presently eludes rapid and effective control methodologies. Dense biofilms formed by Cmm shield internal bacteria from host immune defenses and obstruct the ingress of agrochemicals. Even when agrochemicals disintegrate biofilms, splashing and bouncing during application disperse active ingredients away from target sites.

View Article and Find Full Text PDF

Background: Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [Tc]Tc labeled counterparts for the dosimetry estimation for the [Re]Re-labeled conjugates.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids.

View Article and Find Full Text PDF

Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!