Rac, a member of the Rho family of monomeric GTPases, is an integrator of intracellular signaling in a wide range of cellular processes. We have purified a PtdIns(3,4,5)P3-sensitive activator of Rac from neutrophil cytosol. It is an abundant, 185 kDa guanine-nucleotide exchange factor (GEF), which we cloned and named P-Rex1. The recombinant enzyme has Rac-GEF activity that is directly, substantially, and synergistically activated by PtdIns(3,4,5)P3 and Gbetagammas both in vitro and in vivo. P-Rex1 antisense oligonucleotides reduced endogenous P-Rex1 expression and C5a-stimulated reactive oxygen species formation in a neutrophil-like cell line. P-Rex1 appears to be a coincidence detector in PtdIns(3,4,5)P3 and Gbetagamma signaling pathways that is particularly adapted to function downstream of heterotrimeric G proteins in neutrophils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(02)00663-3DOI Listing

Publication Analysis

Top Keywords

guanine-nucleotide exchange
8
exchange factor
8
p-rex1
5
p-rex1 ptdins345p3-
4
ptdins345p3- gbetagamma-regulated
4
gbetagamma-regulated guanine-nucleotide
4
factor rac
4
rac rac
4
rac member
4
member rho
4

Similar Publications

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Objective: C-X-C motif chemokine receptor 2 (CXCR2) plays a crucial role in inflammation and immunity, and the involvement of chemokine receptors in the tumor microenvironment is extensively documented. However, the impact of CXCR2 deficiency on the complete transcriptome, including mRNA and ncRNAs, in tumor cells remains unclear.

Methods: In this study, we aimed to identify differentially expressed (DE) messenger RNA (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in CXCR2 knockout HeLa cells through transcriptome sequencing and to construct regulatory networks.

View Article and Find Full Text PDF

Roles of the Gene in the Growth and Pathogenicity Regulation of .

J Fungi (Basel)

January 2025

Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.

() is a filamentous fungus that causes invasive aspergillosis in immunocompromised individuals. Regulating fungal growth is crucial for preventing disease development. This study found that deleting the guanine nucleotide exchange factor gene led to slower growth and reduced the fungal burden and mortality of infected mice.

View Article and Find Full Text PDF

The Gene Product STIL Is Essential for Dendritic Spine Formation.

Cells

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.

Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.

View Article and Find Full Text PDF

The ARHGEF40 gene, also known as SOLO, encodes a RhoA-targeting guanine nucleotide exchange factor (GEF) and is currently considered a candidate gene with a potential relationship to disease. Our laboratory has confirmed variants at position p.Arg225 of the ARHGEF40 protein in multiple unrelated individuals with a phenotype including dysmorphic features, congenital anomalies and neurodevelopmental abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!