We investigated the effects of intact pathogenic Mycoplasma hyopneumoniae, nonpathogenic M. hyopneumoniae, and Mycoplasma flocculare on intracellular free Ca2+ concentrations ([Ca2+]i) in porcine ciliated tracheal epithelial cells. The ciliated epithelial cells had basal [Ca2+]i of 103 +/- 3 nM (n = 217 cells). The [Ca2+]i increased by 250 +/- 19 nM (n = 47 cells) from the basal level within 100 s of the addition of pathogenic M. hyopneumoniae strain 91-3 (300 microg/ml), and this increase lasted approximately 60 s. In contrast, nonpathogenic M. hyopneumoniae and M. flocculare at concentrations of 300 microg/ml failed to increase [Ca2+]i. In Ca2+-free medium, pathogenic M. hyopneumoniae still increased [Ca2+]i in tracheal cells. Pretreatment with thapsigargin (1 microM for 30 min), which depleted the Ca2+ store in the endoplasmic reticulum, abolished the effect of M. hyoneumoniae. Pretreatment with pertussis toxin (100 ng/ml for 3 h) or U-73122 (2 microM for 100 s), an inhibitor of phospholipase C, also abolished the effect of M. hyopneumoniae. The administration of mastoparan 7, an activator of pertussis toxin-sensitive proteins G(i) and G(o), increased [Ca2+]i in ciliated tracheal cells. These results suggest that pathogenic M. hyopneumoniae activates receptors that are coupled to G(i) or G(o), which in turn activates a phospholipase C pathway, thereby releasing Ca2+ from the endoplasmic reticulum. Thus, an increase in Ca2+ may serve as a signal for the pathogenesis of M. hyopneumoniae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC127901 | PMC |
http://dx.doi.org/10.1128/IAI.70.5.2502-2506.2002 | DOI Listing |
Tissue Cell
December 2024
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China. Electronic address:
Chronic obstructive pulmonary disease (COPD) poses global health challenges owing to limited treatment options and high rates of morbidity and mortality. Airway organoids have recently become a valuable resource for the investigation of respiratory diseases. However, limited access to clinical tissue samples hinders the use of airway organoids to study COPD.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Pharmacy, Dongguk University, Seoul, Republic of Korea.
Understanding the early interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human airway epithelial cells is essential for unraveling viral replication and spread mechanisms. In this study, we investigated the early dynamics of airway epithelial cells during SARS-CoV-2 infection using well-differentiated human nasal and tracheal epithelial cell cultures by incorporating three publicly available single-cell RNA sequencing datasets. We identified a previously uncharacterized cell population, termed virus-rich intermediate (VRI) cells, representing an intermediate differentiation stage between basal and ciliated cells.
View Article and Find Full Text PDFBio Protoc
December 2024
From the Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.
Developing a physiologically relevant in vitro model of the respiratory epithelium is critical for understanding lung development and respiratory diseases. Here, we describe a detailed protocol in which the fetal mouse proximal epithelial progenitors were differentiated into 3D airway organoids, which contain terminal-differentiated ciliated cells and basal stem cells. These differentiated airway organoids could constitute an excellent experimental model to elucidate the molecular mechanisms of airway development and epithelial cell fate determination and offer an important tool for establishing pulmonary dysplasia disease in vitro.
View Article and Find Full Text PDFTransplantation of airway basal stem cells could achieve a durable cure for genetic diseases of the airway, such as cystic fibrosis and primary ciliary dyskinesia. Recent work demonstrated the potential of primary- and pluripotent stem cell (PSC)-derived basal cells to efficiently engrai into the mouse trachea aier injury. However, there are many hurdles to overcome in translating these approaches to humans including developing safe and efficient methods for delivery in larger animal models.
View Article and Find Full Text PDFSci Rep
November 2024
Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, Sioux Falls, SD, 57104, USA.
Dysfunction of motile cilia can impair mucociliary clearance in the airway and result in primary ciliary dyskinesia (PCD). We previously showed that mutations in central pair apparatus (CPA) genes perturb ciliary motility and result in PCD in mouse models. However, little is known about how epithelial cell types in the ciliary microenvironment of the upper airway respond to defects in ciliary motility and mucociliary clearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!