Major alterations of choroidal cell polarity and protein expression were previously shown to be induced in rats by long-term adaptation to space flight (14 days aboard a space shuttle) or anti-orthostatic suspension (14 and 28 days) performed by tilting rats head-down (i.e. using a ground-based model known to simulate several effects of weightlessness). In rabbits, it was hypothesized that the blood-CSF barrier was opened in choroid plexus, after a short head-down suspension. To understand the early responses to fluid shifts induced by head-down tilts and evaluate the tightness of the choroidal junctions, we have investigated the effects of acute adaptations to anti-orthostatic restraints, using hindlimb-suspended Sprague-Dawley and Wistar rats. Ultrastructural and immunocytochemical studies were performed on choroid plexuses from lateral, third and fourth ventricles, after 30, 90 and 180 minutes of head-down tilt. Alterations were not perceptible at the level of choroidal tight junctions, as shown by freeze-fracture, claudin-1 and ZO-1 immunolocalizations and conventional electron microscopy, after intravenous injection of cytochrome C. The apical surface of choroidal cells was clearly more affected. Microvilli were longer and thinner and ezrin was over-expressed during all the periods of time considered, showing an early cytoskeletal response. Several proteins involved in the choroidal production of cerebrospinal fluid (sodium-potassium ATPase, carbonic anhydrase II, aquaporin 1) appeared first increased (30 minutes after the tilt), and then, returned to the control level or were lowered (after a 3-hour head-down suspension). Although head-down tilts do not seem to damage the blood-cerebrospinal fluid barrier in choroid plexus, it seemed that the expression of several apical proteins is affected very early.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015008308515DOI Listing

Publication Analysis

Top Keywords

choroid plexus
12
tight junctions
8
protein expression
8
head-down tilt
8
head-down suspension
8
head-down tilts
8
head-down
7
choroidal
5
persistence tight
4
junctions changes
4

Similar Publications

Chemokine associations with blood cerebrospinal fluid (CSF) barrier permeability and delirium.

Brain Behav Immun Health

February 2025

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.

Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired.

View Article and Find Full Text PDF

Introduction: The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid.

View Article and Find Full Text PDF

Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.

Neuroinformatics

January 2025

Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.

View Article and Find Full Text PDF

[F]R91150: Improved radiosynthesis and in vivo evaluation as imaging probe for 5-HT receptors.

Eur J Med Chem

January 2025

Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Straße 62, 50937, Cologne, Germany.

Serotonergic 5-HT receptors in the cortex and other forebrain structures have been linked to cognitive, emotional and memory processes. In addition, dysfunction or altered expression of these receptors is associated with neuropsychiatric and neurodegenerative disorders. [F]R91150 is a candidate radiotracer for positron emission tomography (PET) imaging of 5-HT receptors, which showed promising properties in in vitro studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!