Background: Mutations in the PRSS1 gene explain most occurrences of hereditary pancreatitis (HP) but many HP families have no PRSS1 mutation. Recently, an association between the mutation N34S in the pancreatic secretory trypsin inhibitor (SPINK1 or PSTI) gene and idiopathic chronic pancreatitis (ICP) was reported. It is unclear whether the N34S mutation is a cause of pancreatitis per se, whether it modifies the disease, or whether it is a marker of the disease.
Patients And Methods: A total of 327 individuals from 217 families affected by pancreatitis were tested: 152 from families with HP, 108 from families with ICP, and 67 with alcohol related CP (ACP). Seven patients with ICP had a family history of pancreatitis but no evidence of autosomal dominant disease (f-ICP) compared with 87 patients with true ICP (t-ICP). Two hundred controls were also tested for the N34S mutation. The findings were related to clinical outcome.
Results: The N34S mutation was carried by five controls (2.5%; allele frequency 1.25%), 11/87 (13%) t-ICP patients (p=0.0013 v controls), and 6/7 (86%) affected (p<0.0001 v controls) and 1/9 (11%) unaffected f-ICP cases. N34S was found in 4/108 affected HP patients (p=0.724 v controls), in 3/27 (11%) with wild-type and in 1/81 (1%) with mutant PRSS1, and 4/67 ACP patients (all p>0.05 v controls). The presence of the N34S mutation was not associated with early disease onset or disease severity.
Conclusions: The prevalence of the N34S mutation was increased in patients with ICP and was greatest in f-ICP cases. Segregation of the N34S mutation in families with pancreatitis is unexplained and points to a complex association between N34S and another putative pancreatitis related gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1773194 | PMC |
http://dx.doi.org/10.1136/gut.50.5.675 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research, 244 AJC Bose Road, Kolkata, 700020, India.
Panel of known genetic mutations (SPINK1, PRSS1, PRSS2, CTRC, and CFTR) in patients with Fibrocalcific pancreatic diabetes (FCPD)compared to Type 2 Diabetes (T2DM) and healthy controls with emphasis on SPINK1 (N34S) mutations. Whole blood samples were used to detect mutations by PCR followed by Sanger sequencing. In-silico analysis of N34S performed, to explore role in pathogenesis.
View Article and Find Full Text PDFJ Surg Case Rep
October 2024
Department of General Surgery, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil.
Biochem Biophys Res Commun
January 2024
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Project Division of Advanced Biopharmaceutical Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. Electronic address:
For certain industrial applications, the stability of protein oligomers is important. In this study, we demonstrated an efficient method to improve the thermal stability of oligomers using the trimeric protein chloramphenicol acetyltransferase (CAT) as the model. We substituted all interfacial residues of CAT with alanine to detect residues critical for oligomer stability.
View Article and Find Full Text PDFPancreatology
June 2023
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Electronic address:
Serine protease inhibitor Kazal type 1 (SPINK1) is a trypsin-selective inhibitor protein secreted by the exocrine pancreas. Loss-of-function SPINK1 mutations predispose to chronic pancreatitis through either reduced expression, secretion, or impaired trypsin inhibition. In this study, we aimed to characterize the inhibitory activity of mouse SPINK1 against cationic (T7) and anionic (T8, T9, T20) mouse trypsin isoforms.
View Article and Find Full Text PDFAnn Clin Transl Neurol
May 2023
Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA.
Objective: The goal of this study is to demonstrate the utility of a growth assay to quantify the functional impact of single nucleotide variants (SNVs) in SLC2A1, the gene responsible for Glut1DS.
Methods: The functional impact of 40 SNVs in SLC2A1 was quantitatively determined in HAP1 cells in which SLC2A1 is required for growth. Donor libraries were introduced into the endogenous SLC2A1 gene in HAP1-Lig4KO cells using CRISPR/Cas9.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!