A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase.

Trends Plant Sci

Cell Biology and Molecular Genetics, University of Maryland, HJ Patterson Hall, College Park, MD 20742-5815, USA.

Published: April 2002

The vacuolar-type H(+)-ATPase acidifies intracellular compartments and is essential for many processes, including cotransport, guard cell movement, development, and tolerance to environmental stress. We have identified at least 26 genes encoding subunits of the vacuolar-type H(+)-ATPase in the Arabidopsis thaliana genome, although inconsistent nomenclature of these genes is confusing. The pump consists of subunits A through H of the peripheral V(1) complex, and subunits a, c, c" and d of the V(o) membrane sector. Most V(1) subunits are encoded by a single gene, whereas V(o) subunits are encoded by multiple genes found in duplicated segments of the genome. We propose to name these genes VHA-x, where x represents the letter code for each subunit. Applying a consistent nomenclature will help us to understand how the expression, assembly and activity of this pump are integrated with plant growth, signaling, development and adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1360-1385(02)02240-9DOI Listing

Publication Analysis

Top Keywords

vacuolar-type h+-atpase
8
subunits encoded
8
genes
5
subunits
5
simple nomenclature
4
nomenclature complex
4
complex proton
4
proton pump
4
pump vha
4
vha genes
4

Similar Publications

Article Synopsis
  • The vacuolar-type H-ATPase (V-ATPase) is essential for regulating pH levels in cells, and its activity is influenced by various pathways, particularly phosphorylation, which is not well understood.
  • In response to starvation, the kinase ABL1 phosphorylates a specific subunit of V-ATPase, ATP6V1B2, enhancing its assembly and function.
  • ABL1 inhibition disrupts V-ATPase assembly and lysosomal acidification, leading to impaired autophagy processes, including the degradation of damaged cellular components, highlighting ABL1's key role in cellular stress responses.
View Article and Find Full Text PDF

V-ATPase in cancer: mechanistic insights and therapeutic potentials.

Cell Commun Signal

December 2024

College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China.

Vacuolar-type H+-ATPase (V-ATPase) is a crucial proton pump that plays an essential role in maintaining intracellular pH homeostasis and a variety of physiological processes. This review provides an in-depth exploration of the structural components, functional mechanisms, and regulatory modes of V-ATPase in cancer cells. Comprising two main domains, V and V, V-ATPase drives the proton pump through ATP hydrolysis, sustaining the pH balance within the cell and organelles.

View Article and Find Full Text PDF

Structure of yeast RAVE bound to a partial V complex.

Proc Natl Acad Sci U S A

December 2024

Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

Vacuolar-type ATPases (V-ATPases) are membrane-embedded proton pumps that acidify intracellular compartments in almost all eukaryotic cells. Homologous with ATP synthases, these multisubunit enzymes consist of a soluble catalytic V subcomplex and a membrane-embedded proton-translocating V subcomplex. The V and V subcomplexes can undergo reversible dissociation to regulate proton pumping, with reassociation of V and V requiring the protein complex known as RAVE (regulator of the ATPase of vacuoles and endosomes).

View Article and Find Full Text PDF

Mutual interaction between doxorubicin (DOX) and cardiomyocytes is crucial for cardiotoxicity progression. Cardiomyocyte injury is an important pathological feature of DOX-induced cardiomyopathy, and its molecular pathogenesis is multifaceted. In addition to the direct toxic effects of DOX on cardiomyocytes, DOX-induced exosomes in the extracellular microenvironment also regulate the pathophysiological states of cardiomyocytes.

View Article and Find Full Text PDF

Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles.

J Struct Biol

December 2024

Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, Toronto M5S 1A8, Canada. Electronic address:

Electron cryomicroscopy (cryo-EM) has recently allowed determination of near-atomic resolution structures of membrane proteins and protein complexes embedded in lipid vesicles. However, particle selection from electron micrographs of these vesicles can be challenging due to the strong signal contributed from the lipid bilayer. This challenge often requires iterative and laborious particle selection workflows to generate a dataset of high-quality particle images for subsequent analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!