Can we discover novel pathways using metabolomic analysis?

Curr Opin Biotechnol

Max-Planck-Institute of Molecular Plant Physiology, Department Willmitzer, 14424 Potsdam, Germany.

Published: April 2002

Metabolomic analysis aims at the identification and quantitation of all metabolites in a given biological sample. Current data acquisition and network analysis strategies are classified on the basis of pathway elucidation and characteristics of theoretical networks. The development of metabolomic methods and tools is progressing rapidly, but an understanding of the resulting data is limited owing to a fundamental lack of biochemical and physiological knowledge about network organization in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0958-1669(02)00299-9DOI Listing

Publication Analysis

Top Keywords

discover novel
4
novel pathways
4
pathways metabolomic
4
metabolomic analysis?
4
analysis? metabolomic
4
metabolomic analysis
4
analysis aims
4
aims identification
4
identification quantitation
4
quantitation metabolites
4

Similar Publications

Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

is a genus of over 50 species that are commonly used in primary care in several countries. This study seeks to inspire researchers to quickly discover and isolate the key active metabolites found in taxa, thereby promoting the development of novel, safe, and effective therapies for a variety of illnesses. To this end, we performed a thorough search of English-language publications from PubMed, Scopus, ScienceDirect, Web of Science, Google Scholar, and ResearchGate.

View Article and Find Full Text PDF

Protein arginylation mediated by arginyltransferase 1 is a crucial regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with other macromolecules. This enzyme and its targets are of immense interest for modulating cellular processes in diseased states like obesity and cancer. Despite being an important target molecule, no highly potent drug against this enzyme exists.

View Article and Find Full Text PDF

Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery.

NPJ Antimicrob Resist

November 2024

College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.

Polymicrobial communities inhabit the cystic fibrosis (CF) airway, whereby microbial interactions can occur. One prominent CF pathogen is Mycobacterium abscessus, whose treatment is largely unsuccessful. This creates a need to discover novel antimicrobial agents to treat M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!