Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice.

Hear Res

MRC Institute of Hearing Research, University of Nottingham, University Park, NG7 2RD, UK.

Published: February 2002

In bronx waltzer mouse mutants, inner hair cells die at an early stage in their development, from around 17.5 days of gestation onwards. In contrast, outer hair cells appear to develop normally. Vestibular hair cells also degenerate, but the earliest signs of vestibular abnormalities have not yet been described. We looked at prenatal and early postnatal stages of vestibular development by scanning electron microscopy in the mutants, and established that vestibular hair cells (types I and II) never reach beyond the middle stages of differentiation (at least up to P2) and instead show signs of degeneration. Thus, it appears that the bronx waltzer gene product is required for the continued survival and differentiation of inner and vestibular hair cells past a set point in their development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5955(01)00429-4DOI Listing

Publication Analysis

Top Keywords

hair cells
24
vestibular hair
16
bronx waltzer
12
vestibular
6
hair
6
cells
6
early development
4
development degeneration
4
degeneration vestibular
4
cells bronx
4

Similar Publications

Cochlear Organ Dissection, Immunostaining, and Confocal Imaging in Mice.

Bio Protoc

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.

View Article and Find Full Text PDF

Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.

View Article and Find Full Text PDF

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

Age-related hearing loss affects one-third of the population over 65 years. However, the diverse pathologies underlying these heterogenous phenotypes complicate genetic studies. To overcome challenges associated with accurate phenotyping for older adults with hearing loss, we applied computational phenotyping approaches based on audiometrically measured hearing loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!