A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrastructural effects of silicic acid on primary lung fibroblasts in tissue culture. | LitMetric

Ultrastructural effects of silicic acid on primary lung fibroblasts in tissue culture.

Tissue Cell

Center for Proteomics and Physiomics, Delaware Water Gap Science Institute, Bangor, PA 18013, USA.

Published: October 2001

Transmission and scanning electron microscopic examination of primary lung fibroblasts exposed in tissue culture to polymeric silicic acid (PSA) revealed profound cellular changes in the cell surface membranes, resulting in rapid endocytosis of affected membranes and formation of multivesicular bodies. Exposure to monomeric silicic acid did not appear to exhibit any immediate adverse effects. Appearance of numerous cytoplasmic vacuoles within 1 h of PSA exposure was easily visible by light microscopy. Electron microscopy revealed that PSA exposure caused formation of an 'osmiophilic' cell surface membrane. Numerous osmiophilic cytoplasmic blebs on the surface and subsequent endocytotic vesicles appeared to collapse and aggregate into multivesicular bodies. This study provides ultrastructural evidence of the direct interaction between lung fibroblasts and polymeric silicic acid, which has a dramatic effect the surface membrane, its subsequent internalization and cytoplasmic processing. This interaction could be one of the key steps in the damaging effects of silica containing dust.

Download full-text PDF

Source
http://dx.doi.org/10.1054/tice.2001.0205DOI Listing

Publication Analysis

Top Keywords

silicic acid
16
lung fibroblasts
12
primary lung
8
tissue culture
8
polymeric silicic
8
cell surface
8
multivesicular bodies
8
psa exposure
8
surface membrane
8
ultrastructural effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!