Isolated Ca2+-binding EF-hand peptides have a tendency to dimerize. This study is an attempt to account for the coupled equilibria of Ca2+-binding and peptide association for two EF-hands with strikingly different loop sequence and net charge. We have studied each of the two separate EF-hand fragments from calbindin D9k. A series of Ca2+-titrations at different peptide concentrations were monitored by CD and fluorescence spectroscopy. All data were fitted simultaneously to both a complete model of all possible equilibrium intermediates and a reduced model not including dimerization in the absence of Ca2+. Analytical ultracentrifugation shows that the peptides may occur as monomers or dimers depending on the solution conditions. Our results show strikingly different behavior for the two EF-hands. The fragment containing the N-terminal EF-hand shows a strong tendency to dimerize in the Ca2+-bound state. The average Ca2+-affinity is 3.5 orders of magnitude lower than for the intact protein. We observe a large apparent cooperativity of Ca2+ binding for the overall process from Ca2+-free monomer to fully loaded dimer, showing that a Ca2+-free EF-hand folds upon dimerization to a Ca2+-bound EF-hand, thereby presenting a preformed binding site to the second Ca2+-ion. The C-terminal EF-hand shows a much smaller tendency to dimerize, which may be related to its larger net negative charge. In spite of the differences in dimerization behavior, the Ca2+ affinities of both EF-hand fragments are similar and in the range lgK = 4.6-5.3.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.10080DOI Listing

Publication Analysis

Top Keywords

tendency dimerize
12
calbindin d9k
8
ef-hand fragments
8
ef-hand
7
coupling ligand
4
ligand binding
4
dimerization
4
binding dimerization
4
dimerization helix-loop-helix
4
helix-loop-helix peptides
4

Similar Publications

Building on our previous studies, which have demonstrated that homochiral propagating species-(*,*)-[MeGa(-OCH(Me)COR)]-were crucial for the heteroselectivity of [MeGa(-OCH(Me)COMe)] in the ring-opening polymerization (ROP) of racemic lactide (-LA), we have investigated the effect of alkyl groups on the structure and catalytic properties of dialkylgallium alkoxides in the ROP of -LA. Therefore, we have isolated and characterized the -[RGa(-OCH(Me)COMe] (R = Et (), Pr () and -[RGa(-OCH(Me)CHN] (R = Et (), Pr ()) complexes, to demonstrate the effect of alkyl groups on the chiral recognition induced the formation of the respective homochiaral species-(*,*)-[RGa(-OCH(Me)COMe)] and (*,*)-[RGa(-OCH(Me)CHN]. Moreover, we have investigated the structure of (,)-[RGa(-OCH(Me)COMe] (R = Et ((,)-, R = Pr ((,)-,) and their catalytic activity in the ROP of -LA.

View Article and Find Full Text PDF

Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms.

Colloids Surf B Biointerfaces

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.

View Article and Find Full Text PDF

Computational insights into the aggregation mechanism of human calcitonin.

Int J Biol Macromol

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

Human calcitonin (hCT) is a peptide hormone that regulates calcium homeostasis, but its abnormal aggregation can disrupt physiological functions and increase the risk of medullary thyroid carcinoma. To elucidate the mechanisms underlying hCT aggregation, we investigated the self-assembly dynamics of hCT segments (hCT, hCT, and hCT) and the folding and dimerization of full-length hCT through microsecond atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that hCT and hCT predominantly existed as isolated monomers with transient small-sized oligomers, indicating weak aggregation tendencies.

View Article and Find Full Text PDF

H-NS, a nucleoid-associated protein (NAP) from enterobacteria, regulates gene expression by dynamically transducing environmental cues to conformational assembly and DNA binding. In this work, we show that H-NS from Escherichia coli, which can assemble into octameric and tetrameric oligomerization states, forms spontaneous micron-sized liquid-like condensates with DNA at sub-physiological concentrations in vitro. The heterotypic condensates are metastable at 298 K, partially solubilizing with time, while still retaining their liquid-like properties.

View Article and Find Full Text PDF

HLA-B27 and spondyloarthritis: at the crossroads of innate and adaptive immunity.

Nat Rev Rheumatol

December 2024

Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

Article Synopsis
  • HLA-B*27 significantly increases the risk of developing spondyloarthritis (SpA), which encompasses various forms including axial SpA, peripheral arthritis, and inflammation in several areas of the body.
  • The exact mechanism by which HLA-B*27 contributes to SpA is unclear, but three major hypotheses suggest it may promote autoimmune responses, activate harmful immune pathways, and lead to misfolding issues that enhance inflammation and bone formation.
  • This review highlights current theories about HLA-B*27's role in SpA, notes recent advancements in research, identifies knowledge gaps, and suggests areas for future investigation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!