The effect of the inhalation of pure oxygen on the kidney was evaluated by measuring monoexponential T1 and T2* relaxation times in nine volunteers using a multiple-shot turbo spin echo and multiple echo gradient echo sequences, respectively. The T1 of the renal cortex decreased significantly when breathing pure oxygen as compared to normoxia (from 882 +/- 59 to 829 +/- 70 msec, P < 0.05), while that of the renal medulla was unchanged. No significant changes were seen in the T2* of either compartment. Dynamic imaging using an inversion recovery sequence with an optimized inversion time typically produced signal changes of 20% in the renal cortex. Studies to assess if oxygen-induced changes in flow contributed to this effect showed that the flow contribution was not significant. Although longer inversion times (880 ms) produced optimal contrast, acceptable contrast was also obtained at shorter inversion times (450 msec) in the renal cortex, spleen, and lung, with the latter being of opposite polarity to the other two tissues, implying a shorter parenchymal T1 than previously reported in the literature. The results are consistent with oxygen acting as an intravascular contrast agent which induces a shortening of T1 in the arterial blood volume.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.10127DOI Listing

Publication Analysis

Top Keywords

pure oxygen
12
renal cortex
12
inhalation pure
8
inversion times
8
renal
5
imaging changes
4
changes renal
4
renal induced
4
induced inhalation
4
oxygen
4

Similar Publications

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer.

Nano Converg

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeolabuk-do, 56212, Republic of Korea.

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of AlO-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!