Engineering vascular networks in porous polymer matrices.

J Biomed Mater Res

Department of Biomedical Engineering, University of Michigan, 5213 Dental School, 1011 North University Avenue, Ann Arbor, Michigan 48109-1078, USA.

Published: June 2002

Enhanced vascularization is critical to the treatment of ischemic tissues and the engineering of new tissues and organs. We have investigated whether sustained and localized delivery of vascular endothelial growth factor (VEGF) combined with transplantation of human microvascular endothelial cells (HMVECs) can be used to engineer new vascular networks. VEGF was incorporated and released in a sustained manner from porous poly(lactic-co-glycolic acid) (PLG) matrices to promote angiogenesis at the transplantation site. VEGF could be incorporated and released in a biologically active form from PLG matrices, with the majority of VEGF release (64%) occurring within 2 weeks. These matrices promoted a 260% increase in the density of host SCID mouse-derived capillaries invading the matrices after 7 days of implantation, confirming the activity of the released VEGF. HMVECs were transplanted into SCID mice on PLG matrices, and organized to form immature human-derived vessels within 3 days. Functional vessels were observed within 7 days. Importantly, when HMVECs were transplanted on VEGF-releasing matrices, a 160% increase in the density of human-derived blood vessels was observed after 14 days. These findings suggest that combining elements of vasculogenesis and angiogenesis provides a viable and novel approach to enhancing local vascularization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.10134DOI Listing

Publication Analysis

Top Keywords

plg matrices
12
vascular networks
8
vegf incorporated
8
incorporated released
8
increase density
8
hmvecs transplanted
8
vessels observed
8
observed days
8
matrices
7
vegf
5

Similar Publications

Novel human lymph node-derived matrix supports the adhesion of metastatic oral carcinoma cells.

BMC Cancer

August 2023

Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Background: 3D culture is increasingly used in cancer research, as it allows the growth of cells in an environment that mimics in vivo conditions. Metastases are the primary cause of morbidity and mortality in cancer patients, and solid tumour metastases are mostly located in lymph nodes. Currently, there are no techniques that model the pre-metastatic lymph node microenvironment in vitro.

View Article and Find Full Text PDF

Crosstalk between the plasminogen/plasmin system and inflammation resolution.

J Thromb Haemost

October 2023

Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

The plasminogen/plasmin (Plg/Pla) system, best known for its classical role in thrombolysis, has been recently highlighted as a regulator of other biological processes in mammals, including key steps involved in the resolution of inflammation. Inflammation resolution is a complex process coordinated by different cellular effectors, notably leukocytes, and active mediators, and is initiated shortly after the inflammatory response begins. Once the inflammatory insult is eliminated, an effective and timely engagement of proresolution programs prevents persistent inflammation, thereby avoiding excessive tissue damage, fibrosis, and the development of autoimmunity.

View Article and Find Full Text PDF

Background: The trematode Fasciola hepatica is the most widespread causative agent of fasciolosis, a parasitic disease that mainly affects humans and ruminants worldwide. During F. hepatica infection, newly excysted juveniles (FhNEJ) emerge in the duodenum of the mammalian host and migrate towards their definitive location, the intra-hepatic biliary ducts.

View Article and Find Full Text PDF

Mechano-modulatory synthetic niches for liver organoid derivation.

Nat Commun

July 2020

Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.

The recent demonstration that primary cells from the liver can be expanded in vitro as organoids holds enormous promise for regenerative medicine and disease modelling. The use of three-dimensional (3D) cultures based on ill-defined and potentially immunogenic matrices, however, hampers the translation of liver organoid technology into real-life applications. We here use chemically defined hydrogels for the efficient derivation of both mouse and human hepatic organoids.

View Article and Find Full Text PDF

Membrane-bound plasmin is used by immune cells to degrade extracellular matrices, which facilitates migration. The plasminogen receptor Plg-R is expressed by immune cells, including monocytes and macrophages. Among monocytes and macrophages, distinct subsets can be distinguished based on cell surface markers and pathophysiological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!