Ovarian tumors range from benign to aggressive malignant tumors, including an intermediate class referred to as borderline carcinoma. The prognosis of the disease is strongly dependent on tumor classification, where patients with borderline tumors have much better prognosis than patients with carcinomas. We here describe the use of hierarchical clustering analysis of quantitative protein expression data for classification of this type of tumor. An accurate classification was not achieved using an unselected set of 1,584 protein spots for clustering analysis. Different approaches were used to select spots that were differentially expressed between tumors of different malignant potential and to use these sets of spots for classification. When sets of proteins were selected that differentiated benign and malignant tumors, borderline tumors clustered in the benign group. This is consistent with the biologic properties of these tumors. Our results indicate that hierarchical clustering analysis is a useful approach for analysis of protein profiles and show that this approach can be used for differential diagnosis of ovarian carcinomas and borderline tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.10288DOI Listing

Publication Analysis

Top Keywords

borderline tumors
12
clustering analysis
12
tumors
9
ovarian tumors
8
analysis protein
8
protein expression
8
malignant tumors
8
hierarchical clustering
8
borderline
5
analysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!