To evaluate the influence of episodic events on particle and hydrophobic organic contaminant (HOC) cycling in the Great Lakes, we deployed sequencing sediment traps at two locations in the western arm of Grand Traverse Bay, Lake Michigan. The traps collected integrated samples of settling particles every 2 weeks from May 1997 to September 1999. The total polycyclic aromatic hydrocarbon (t-PAH) and total polychlorinated biphenyl (t-PCB) settling fluxes from the surface waters in the southern site were significantly greater than those from the northern site. In addition, there were more frequent brief increases in the mass flux to the southern site than to the northern site. These episodic events, which occurred only 20% of the time, accounted for 65% of both the mass flux and t-PAH flux. The t-PCB flux was not influenced by these episodic events, and only 18% of the t-PCB flux occurred during these events. PAHs and PCBs appear to be tracing different types of particles in the water column. Several large mass flux events characteristic of seiches were observed simultaneously in the benthic nepheloid layer (BNL) at both the northern and the southern sites. The particles settling as a result of these resuspension events had lower t-PCB and t-PAH concentrations than particles settling at other times. This suggests that the material settling into the traps on the high mass flux days is composed of a mixture of the less contaminated underlying resuspended sediment and the "regular" contaminant-rich particles settling into the BNL.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es011262jDOI Listing

Publication Analysis

Top Keywords

mass flux
16
episodic events
12
particles settling
12
grand traverse
8
traverse bay
8
bay lake
8
lake michigan
8
southern site
8
northern site
8
t-pcb flux
8

Similar Publications

A dynamic mass balance model was developed to simulate contamination dynamics in the process water of fresh and frozen fruits, vegetables and herbs (ffFVH) during processing and handling operations. The mass balance relates to the flux of water and product in a wash tank and the number of microbial cells released in the water, inactivated by the water disinfectant or transferred from the water back to the product. Critical variables describing microbial dynamics in water are: (i) the chemical oxygen demand (COD), as an indicator of the concentration of organic matter; (ii) free chlorine (FC) and particularly its antimicrobial fraction, hypochlorous acid (HOCl); and (iii) the microbial population levels.

View Article and Find Full Text PDF

This study evaluates the unsteady laminar flow and heat and mass transfer of a nanofluid in the appearance of gyrotactic microorganisms. In this analysis, using the Darcy-Forchheimer flow inside the vicinity of a nonlinearly stretched surface with Brownian motion and thermophoresis impacts. Similarity conversion is familiar with reduced governing models into dimensionless variables, and "bvp4c," a MATLAB solver, is employed to find the computational outputs of this analysis.

View Article and Find Full Text PDF

Efficient Methanol Oxidation Kinetics Enabled by an Ordered Heterocatalyst with Dual Electric Fields.

J Am Chem Soc

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

Induced by a sharp-tip-enhanced electric field, periodical nanoassemblies can regulate the reactant flux on the electrode surface, efficiently optimizing the mass transfer kinetics in electrocatalysis. However, when the nanoscale building blocks in homoassemblies are arranged densely, it results in the overlap and reduction of the local electric field. Herein, we present a comprehensive kinetic heteromodel that simultaneously couples the sharp-tip-enhanced electric field and charge transfer electric field between different building blocks with any arrangement densities.

View Article and Find Full Text PDF

Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy.

Cell Metab

January 2025

Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:

Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo.

View Article and Find Full Text PDF

Optical characterization of dissolved organic carbon (DOC) freshly collected from the circumneutral "white water" of the Rio Solimoes revealed that it had lower aromaticity, lower molecular weight, and a greater autochthonous content than DOC from the acidic "black water" of the Rio Negro. The tambaqui (Colossoma macropomum), a characid member of the Serrasalmidae, is a model neotropical fish that migrates annually between the two rivers. We analysed ionoregulatory responses of the tambaqui over 24 h in ion-poor water at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!