Crosslinking of the transmembrane receptor CD95/Fas leads to activation of a signaling cascade resulting in apoptosis. c-FLIP is a recently described protein that potently inhibits Fas-mediated apoptosis and has been shown to be a key factor in germinal center B cell survival. Because Hodgkin and Reed-Sternberg cells in classical Hodgkin's disease (cHD) are also resistant to Fas-mediated apoptosis we studied the role of c-FLIP in classical HD. High levels of c-FLIP protein were identified in two Fas-resistant Hodgkin-derived cell lines. In contrast to other tumor cells, inhibition of protein synthesis by cycloheximide did not lead to down-regulation of c-FLIP protein in these HD cell lines. Furthermore, Fas-mediated apoptosis was only partially restored suggesting that normal regulation of c-FLIP was disrupted. The in vivo relevance of these findings was supported by demonstration of significant c-FLIP expression by immunohistochemistry in 18 of 19 evaluable cases of primary HD. Taken together, c-FLIP is constitutively expressed in HD and may therefore be a major mechanism responsible for Fas-resistance in HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867202PMC
http://dx.doi.org/10.1016/S0002-9440(10)62578-3DOI Listing

Publication Analysis

Top Keywords

fas-mediated apoptosis
12
c-flip
8
hodgkin reed-sternberg
8
reed-sternberg cells
8
c-flip protein
8
cell lines
8
constitutive expression
4
expression c-flip
4
c-flip hodgkin
4
cells crosslinking
4

Similar Publications

The Fas-mediated apoptosis assay: From concept to clinical application.

J Immunol Methods

January 2025

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. Electronic address:

Abnormal lymphocyte homeostasis underly several Inborn Errors of Immunity (IEoI). In vitro assessment of lymphocyte homeostasis is achieved by specific apoptosis assays reflective of specific homeostasis programs and pathways that are mediated through specific proteins. This review discusses those programs, pathways and proteins and describes the development and use of the in vitro Fas-mediated apoptosis assay, as it relates to the IEoI Autoimmune Lymphoproliferative Syndrome (ALPS) and describes other disorders of lymphocyte homeostasis in the context of other forms of in vitro apoptosis assessment.

View Article and Find Full Text PDF

An engineered Palivizumab IgG2 subclass for synthetic gp130 and fas mediated signaling.

J Biol Chem

January 2025

Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany. Electronic address:

Recently, we phenocopied Interleukin (IL-)6 signaling using the dimerized single-chain variable fragment (scFv) derived from the respiratory syncytial virus (RSV) IgG1-antibody Palivizumab (PLHFc) to activate a Palivizumab anti-idiotypic nanobody (AIP)-gp130 receptor fusion protein. Palivizumab was unable to activate STAT3 signaling, so we aimed to create a similar ligand capable of triggering this pathway. Here, we created three variants of the ligand called PLH0Fc, PLH4Fc and PLH8Fc by shortening the spacer region connecting PLH and Fc from 23 amino acids in PLHFc to 0 amino acids or expanding it by rigid linkers of 4 or 8 alpha helical loops, respectively.

View Article and Find Full Text PDF

The TNF-TNFR1 signaling pathway plays a pivotal role in regulating the balance between cell survival and cell death. Upon binding to TNF, plasma membrane-localized TNFR1 initiates survival signaling, whereas TNFR1 internalization promotes caspase-mediated apoptosis. We previously reported that the α2-6 sialylation of TNFR1 by the tumor-associated sialyltransferase ST6GAL1 diverts signaling toward survival by inhibiting TNFR1 internalization.

View Article and Find Full Text PDF
Article Synopsis
  • MRL/lpr mice, which typically develop autoimmune symptoms similar to systemic lupus erythematosus due to FAS-mediated apoptosis issues, were studied to understand the role of EAF2 in this process.
  • Researchers created EAF2-deficient mice and found that this deficiency led to reduced symptoms like lymphadenopathy, splenomegaly, and nephritis while also extending the mice's lifespan.
  • The study concluded that the lack of EAF2 causes B cells to become hyperactivated but ultimately die off faster due to changes in gene expression, helping reduce autoimmune responses in these mice.
View Article and Find Full Text PDF

Inhibition of MAT2A Impairs Skeletal Muscle Repair Function.

Biomolecules

September 2024

Metabolic Control and Aging-Jiangxi Key Laboratory of Aging and Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China.

The regenerative capacity of muscle, which primarily relies on anabolic processes, diminishes with age, thereby reducing the effectiveness of therapeutic interventions aimed at treating age-related muscle atrophy. In this study, we observed a decline in the expression of methionine adenosine transferase 2A (MAT2A), which synthesizes S-adenosylmethionine (SAM), in the muscle tissues of both aged humans and mice. Considering MAT2A's critical role in anabolism, we hypothesized that its reduced expression contributes to the impaired regenerative capacity of aging skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!