Increased expression level of the splicing variant of SIP1 in motor neuron diseases.

Int J Biochem Cell Biol

Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahogashi, Kodaira, 187-8502, Tokyo, Japan.

Published: June 2002

Survival motor neuron (SMN) interacting protein 1 (SIP1) interacts with SMN protein and plays a crucial role in the biogenesis of spliceosomes. We have identified three novel splicing variants of the SIP1 (SIP1-beta, -gamma and -delta), in addition to the full-length SIP1-alpha. SIP1-alpha as found to be ubiquitously expressed at high levels in the various normal tissues examined. In contrast, SIP1-beta and -gamma were expressed at very low levels in these tissues. In muscle specimens from patients with spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), the expression of SIP1-alpha was dramatically decreased compared to that observed in the normal tissues. In addition, the expression of SIP1-beta was significantly increased in tissues derived from patients with either disease. These findings suggest that an aberrant alternative splicing event in SIP1 occurs tissues derived from patients with the motor neuron diseases, and contributes to the pathological process of SMA and ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1357-2725(01)00150-9DOI Listing

Publication Analysis

Top Keywords

motor neuron
12
neuron diseases
8
sip1-beta -gamma
8
normal tissues
8
tissues derived
8
derived patients
8
tissues
5
increased expression
4
expression level
4
level splicing
4

Similar Publications

Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.

View Article and Find Full Text PDF

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases (NGD) encompass a range of progressive neurological conditions, such as Alzheimer's disease (AD) and Parkinson's disease (PD), characterised by the gradual deterioration of neuronal structure and function. This degeneration manifests as cognitive decline, movement impairment, and dementia. Our focus in this investigation is on PD, a neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the brain, leading to motor disturbances.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a progressive disease that affects motor neurons, with symptoms usually starting in infancy or early childhood. Recent breakthroughs in treatments targeting SMA have improved both lifespan and quality of life for infants and children with the disease. Given the impact of these treatments, it is essential to develop methods for managing treatment-induced changes in disease characteristics.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Although genes causing familial cases have been identified, those of sporadic ALS, which occupies the majority of patients, are still elusive. In this study, we adopted machine learning to build binary classifiers based on the New York Genome Center (NYGC) ALS Consortium's RNA-seq data of the postmortem spinal cord of ALS and non-neurological disease control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!