The objective of this study was to evaluate occupational exposure to welding fumes and its elements on aluminum welders in Polish industry. The study included 52 MIG/Al fume samples and 18 TIG/Al samples in 3 plants. Air samples were collected in the breathing zone of welders (total and respirable dust). Dust concentration was determined gravimetrically, and the elements in the collected dust were determined by AAS. Mean time-weighted average (TWA) concentrations of the welding dusts/fumes and their components in the breathing zone obtained for different welding processes were, in mg/m3: MIG/Al fumes mean 6.0 (0.8-17.8), Al 2.1 (0.1-7.7), Mg 0.2 (< 0.1-0.9), Mn 0.014 (0.002-0.049), Cu 0.011 (0.002-0.092), Zn 0.016 (0.002-0.14), Pb 0.009 (0.005-0.025), Cr 0.003 (0.002-0.007), and TIG/Al fumes 0.7 (0.3-1.4), Al 0.17 (0.07-0.50). A correlation has been found between the concentration of the main components and the fume/dust concentrations in MIG/Al and TIG/Al fumes. Mean percentages of the individual components in MIG/Al fumes/dusts were Al: 30 (9-56) percent; Mg: 3 (1-5.6) percent; Mn: 0.2 (0.1-0.3) percent; Cu: 0.2 (< 0.1-1.8) percent; Zn: 0.2 (< 0.1-0.8) percent; Pb: 0.2 (< 0.1-1) percent; Cr: < 0.1 percent. The proportion of the respirable fraction in the fumes and their constituents varied between 10 percent and 100 percent. The results showed that MIG/Al fumes concentration was 1.2 times higher than the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV), and the index of the combined exposure to the determined agents was 2.3 (0.4-8.0), mostly because of high Al2O3 contribution. The background concentrations of the components (ca. 5-10 times lower than those in the breathing zone of the welders) did not exceed the Polish MAC value. The elemental composition of total and respirable fume/dust may differ considerably depending on welding methods, the nature of welding-related operations, and work environment conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10473220252826600 | DOI Listing |
BMC Infect Dis
January 2025
Department of Midwifery, College of Health Sciences, Salale University, Fiche, Ethiopia.
Background: Neonatal sepsis remains one of the most common causes of morbidity and mortality among neonates in developing countries. It can cause severe morbidities and sequelae, even though patients survive. Prolonged recovery time of neonatal sepsis leads to hospitalization, increased cost of treatments, antimicrobial resistance, disseminated intravascular coagulation, respiratory failure, septic shock, brain lesions, renal failure, and cardiovascular dysfunction, and eventually death.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients.
View Article and Find Full Text PDFJ Biol Methods
December 2024
National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France.
Background: HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 limits its potential therapeutic application.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.
Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.
View Article and Find Full Text PDFAnat Sci Educ
January 2025
Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
This study describes the process of developing a high-impact, low-cost, and low-maintenance air ventilation system for anatomy facilities. It employed the strategic application of Value Engineering (VE), assuring that the air ventilation system meets contemporary threshold limit values (TLVs) for formaldehyde in the working zone of dissection tables. A creative-innovative construction methodology was used, combining the Theory of Inventive Problem Solving (TRIZ/TIPS) and VE for an anatomy laboratory air ventilation concept.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!