Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens.

Lipids

Inserm U.311, Etablissement Français du Sang-Alsace, Strasbourg, France.

Published: March 2002

The oxidative degradation of phospholipids in the presence and absence of plasmalogens (plasmenyl phosphatidylethanolamine: PPE) was followed by chemical analysis. Human platelet phospholipids, either intact or after removal of PPE by acid treatment, were oxidized with 28 mM 2,2'-azobis(2-amidinopropane di-HCl in Triton X-100 micelles (detergent/phospholipid 5:1, mol/mol). PPE (12% of all phospholipids, mol/mol) disappeared about three times more rapidly than glycerophospholipids, whereas sphingomyelin remained unaltered and the lysophosphatidylethanolamine (lysoPE) generated became progressively more unsaturated. After 60 min oxidation, the FA compositions of PS, PC, and PI were similar in extracts with or without plasmalogens. In contrast, diacyl phosphatidylethanolamine (DPE) became more saturated in the absence of PPE. The rate of phospholipid destruction was always unique to each class, but for all phospholipids slowed down in the presence of PPE. This protective effect increased in the order DPE < PS < PC < PI and did not seem to be simply related to the class unsaturation. Alpha-tocopherol had no influence on the time courses of the quantities and compositions of the phospholipids, even at a molar ratio of alpha-tocopherol to phospholipids four times higher than in platelet membranes. Thus, PPE protected phospholipids efficiently but differentially against peroxidative attack, whereas the contribution of alpha-tocopherol appeared to be negligible even at a concentration four times greater than in platelet membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-002-0892-4DOI Listing

Publication Analysis

Top Keywords

platelet phospholipids
8
oxidative degradation
8
platelet membranes
8
phospholipids
7
ppe
6
platelet
4
phospholipids differentially
4
differentially protected
4
protected oxidative
4
degradation plasmalogens
4

Similar Publications

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

Atopic dermatitis (AD), also known as eczema, is a chronic or relapsing inflammatory skin disease characterized by repeated exacerbations and remissions. Here, we investigated the effects of squid phospholipids (PLs) extracted from Todarodes pacificus on AD. The composition of squid PLs was analyzed using thin-layer chromatography and high-performance liquid chromatography, and the effects of PLs on AD were investigated using a rat paw edema model and an AD-like mouse model (NC/Nga mice).

View Article and Find Full Text PDF

Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.

View Article and Find Full Text PDF

Enzymatically oxygenated phospholipids (eoxPL) from lipoxygenases (LOX) or cyclooxygenase (COX) are prothrombotic. Their generation in arterial disease, and their modulation by cardiovascular therapies is unknown. Furthermore, the Lands cycle acyl-transferases that catalyze their formation are unidentified.

View Article and Find Full Text PDF

Activated platelets promote coagulation primarily by exposing the procoagulant phospholipid phosphatidylserine (PS) on their outer membrane surfaces and releasing PS-expressing microvesicles that retain the original membrane architecture and cytoplasmic components of their originating cells. The accessibility of phosphatidylserine facilitates the binding of major coagulation factors, significantly amplifying the catalytic efficiency of coagulation enzymes, while microvesicle release acts as a pivotal mediator of intercellular signaling. Procoagulant platelets play a crucial role in clot stabilization during hemostasis, and their increased proportion in the bloodstream correlates with an increased risk of thrombosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!