Activation of the sarcolemmal sodium-hydrogen exchanger isoform-1 (NHE-1) in response to the intense intracellular acidosis that develops during ischemia has been identified as an important mechanism of myocardial cell injury. NHE-1 inhibition in the quiescent (nonfibrillating) heart ameliorates functional manifestation of ischemia and reperfusion injury. We investigated in isolated heart and intact rat models of ventricular fibrillation whether NHE-1 inhibition, by using the selective inhibitor cariporide, could ameliorate myocardial abnormalities that develop during ventricular fibrillation and limit resuscitability and survival. In the isolated rat heart, cariporide significantly reduced the magnitude of ischemic contracture during ventricular fibrillation and the accompanying increases in coronary vascular resistance. Hearts that had received cariporide during ventricular fibrillation had no diastolic dysfunction after resuscitation and recovered their systolic function earlier. In intact rats, cariporide given immediately before starting chest compression allowed generation of a coronary perfusion pressure and end-tidal Pco2 comparable with control rats but with significantly less depth of compression. Cariporide had an unprecedented effect in this rat model, prompting spontaneous defibrillation after approximately 8 mins of chest compression. After resuscitation, rats treated with cariporide had significantly less ventricular ectopic activity, better hemodynamic function, and higher survival rates (22 of 24 [94%] vs. 15 of 24 [63%] in control rats, p <.05). We conclude that NHE-1 inhibition may represent a novel and highly effective form of treatment for resuscitation from ventricular fibrillation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00003246-200204001-00010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!