The effect of postprandial body posture on digestion and absorption of dietary carbohydrate were examined through breath hydrogen test on 6 female subjects. During the experiment, the participants either sat on a chair or lay on their backs for the first 4 hr (from 08:00 to 12:00) after eating the test breakfast meal. They then remained sedentary on a sofa for 6 hr (12:00 to 18:00). Participants' end alveolar breath samples were collected for 10 hr (every 15 min from 08:00 to 12:30, and then every 30 min until 18:00). The experiment was conducted on two consecutive days using a randomized, crossover study design. The results demonstrated that in the supine position orocecal transit time of the test meal was significantly slower than in the sitting position (260 +/- 21 min and 238 +/- 20 min, respectively, p < 0.01). In addition, afternoon breath hydrogen excretion due to a partial malabsorption of dietary carbohydrate and its fermentation in the colon was significantly larger in the sitting position (144.0 +/- 24.1 ppm.hr) than in the supine position (110.0 +/- 26.1 ppm.hr, p < 0.05). These results support the hypothesis that there was a marked effect of postprandial body posture on the function of the digestive system. The present findings suggest that the postprandial supine position is preferable to the sitting position for the digestion and absorption of dietary carbohydrate.

Download full-text PDF

Source
http://dx.doi.org/10.2114/jpa.21.45DOI Listing

Publication Analysis

Top Keywords

dietary carbohydrate
16
digestion absorption
12
absorption dietary
12
supine position
12
sitting position
12
posture digestion
8
postprandial body
8
body posture
8
breath hydrogen
8
+/- min
8

Similar Publications

Gums are commonly used in the food industry for their functional properties. However, the growing demand for sustainable and alternative sources has drawn attention to the need for identifying and characterizing non-conventional gum sources with comparable or enhanced features. This study aimed to investigate the exudate gum from apricot trees (Prunus armeniaca) in Malatya as a potential alternative.

View Article and Find Full Text PDF

Background: Few studies have explored the relationship between macronutrient intake and sleep outcomes using daily data from mobile apps.

Objective: This cross-sectional study aimed to examine the associations between macronutrients, dietary components, and sleep parameters, considering their interdependencies.

Methods: We analyzed data from 4825 users of the Pokémon Sleep and Asken smartphone apps, each used for at least 7 days to record objective sleep parameters and dietary components, respectively.

View Article and Find Full Text PDF

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Background & Aim: Metabolic and cardiovascular health outcomes are strongly influenced by diet. Dietary habits established in early childhood may persist into adulthood. This study aimed to examine the association between dietary patterns at both 2 and 8 years of age, explaining the maximum variability of high- and low-quality fats, sugars, and fibre, and cardiometabolic markers at age 8 years.

View Article and Find Full Text PDF

Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides.

Nat Commun

January 2025

Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.

Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!