The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC447592 | PMC |
http://dx.doi.org/10.1086/339933 | DOI Listing |
Environ Microbiome
January 2025
School of Natural Sciences, Bangor University, Bangor, UK.
Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan. Electronic address:
DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications.
View Article and Find Full Text PDFLife Med
August 2024
Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.
View Article and Find Full Text PDFCureus
December 2024
Neurosurgery, Federal Fluminense University, Niterói, BRA.
The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality.
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
Many root-knot nematode (RKN) species in the genus occur in Florida, including , a species able to overcome RKN resistance genes in many crops. The distribution of these nematodes in horticultural crops is not well known. A RKN survey was conducted in South and Central Florida aiming to: (i) identify RKN infecting vegetables, fruit, and other crops; (ii) document host plants; (iii) determine RKN distribution; and (iv) gain insight on the relatedness of obtained in this study with other populations from the USA and other countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!