The recognition that demineralized bone matrix could induce bone formation when placed in mammalian skeletal muscle led to preclinical studies of crude native insoluble bone morphogenetic protein and noncollagenous protein, followed by the clinical application of demineralized bone matrix, chemosterilized autolyzed antigen-extracted allogenic bone, and autolyzed antigen-extracted allogenic bone matrix gelatin. Cultural norms and regulatory agencies influence the availability of different demineralized bone matrix preparations in different parts of the world, but there is continued interest in the biologic structure of native insoluble bone morphogenetic protein and noncollagenous protein aggregates and the applied science of osteoinduction and osteoconduction in reconstructive orthopaedic surgery. Demineralized bone matrix is not widely available in Asia, but tissue processing facilities in the United States distribute demineralized bone matrix materials with different carriers, handling properties, and possibly osteoinductive potential. The purpose of the current study was to review the development and use of various preparations of demineralized bone matrix materials.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003086-200202000-00010DOI Listing

Publication Analysis

Top Keywords

bone matrix
32
demineralized bone
28
bone
12
bone morphogenetic
12
morphogenetic protein
12
matrix
8
orthopaedic surgery
8
native insoluble
8
insoluble bone
8
protein noncollagenous
8

Similar Publications

The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.

View Article and Find Full Text PDF

Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional novel requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Bone is a dynamic tissue that serves several purposes in the human body, including storing calcium, forming blood cells, and protecting and supporting the body's organs. Alkaline phosphatase (ALP) is secreted into the circulation by osteoblasts, the cells responsible for making bone. It attaches to the surface of osteoblast cells or matrix vesicles.

View Article and Find Full Text PDF

Enthesitis, or inflammation specific to sites in the body where tendon inserts into bone, can arise in isolated joints from overuse or in multiple joints as a complication of an autoimmune condition such as psoriatic arthritis or spondyloarthritis. However, the pathogenesis of enthesitis is not well understood, so treatment strategies are limited. A clinically relevant animal model of enthesitis would allow investigators to determine mechanisms driving the disease and evaluate novel therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!