Since the first reports of chloroquine-resistant falciparum malaria in southeast Asia and South America almost half a century ago, drug-resistant malaria has posed a major problem in malaria control. By the late 1980s, resistance to sulfadoxine-pyrimethamine and to mefloquine was also prevalent on the Thai-Cambodian and Thai-Myanmar (Thai-Burmese) borders, rendering them established multidrug-resistant (MDR) areas. Chloroquine resistance spread across Africa during the 1980s, and severe resistance is especially found in east Africa. As a result, more than ten African countries have switched their first-line drug to sulfadoxine-pyrimethamine. Of great concern is the fact that the efficacy of this drug in Africa is progressively deteriorating, especially in foci in east Africa, which are classified as emerging MDR areas. Urgent efforts are needed to lengthen the lifespan of sulfadoxine-pyrimethamine and to identify effective, affordable, alternative antimalarial regimens. Molecular markers for antimalarial resistance have been identified, including pfcrt polymorphisms associated with chloroquine resistance and dhfr and dhps polymorphisms associated with sulfadoxine-pyrimethamine resistance. Polymorphisms in pfmdr1 may also be associated with resistance to chloroquine, mefloquine, quinine, and artemisinin. Use of such genetic information for the early detection of resistance foci and future monitoring of drug-resistant malaria is a potentially useful epidemiological tool, in conjunction with the conventional in-vivo and in-vitro drug-sensitivity assessments. This review describes the various features of drug resistance in Plasmodium falciparum, including its determinants, current status in diverse geographical areas, molecular markers, and their implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1473-3099(02)00239-6 | DOI Listing |
BMC Infect Dis
January 2025
Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
Background: To understand the emergence and spread of drug-resistant parasites in malaria-endemic areas, accurate assessment and monitoring of antimalarial drug resistance markers is critical. Recent advances in next-generation sequencing (NGS) technologies have enabled the tracking of drug-resistant malaria parasites.
Methods: In this study, we used Targeted Amplicon Deep Sequencing (TADS) to characterise the genetic diversity of the Pfk13, Pfdhfr, Pfdhps, and Pfmdr1 genes among primary school-going children in 15 counties in Kenya (Bungoma, Busia, Homa Bay, Migori, Kakamega, Kilifi, Kirinyaga, Kisii, Kisumu, Kwale, Siaya, Tana River, Turkana, Vihiga and West Pokot).
Curr Top Med Chem
January 2025
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India.
The global rise of drug-resistant malaria parasites is becoming an increasing threat to public health, emphasizing the urgent need for the development of new therapeutic strategies. Artimisinin- based therapies, once the backbone of malaria treatment, are now at risk due to the resistance developed in parasites. The lack of a universally accessible malaria vaccine exacerbates this crisis, underscoring the need to explore new antimalarial drugs.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.
View Article and Find Full Text PDFMalar J
January 2025
Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.
View Article and Find Full Text PDFPLoS Med
January 2025
Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.
Background: Globally, over one-third of pulmonary tuberculosis (TB) disease diagnoses are made based on clinical criteria after a negative bacteriological test result. There is limited information on the factors that determine clinicians' decisions to initiate TB treatment when initial bacteriological test results are negative.
Methods And Findings: We performed a systematic review and individual patient data meta-analysis using studies conducted between January 2010 and December 2022 (PROSPERO: CRD42022287613).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!