To identify a new selective EP4-agonist with improved chemical stability, further chemical modification of those reported previously was continued. We focused our attention on chemical modification of the alpha chain of 3,7-dithiaPGE(1) and selected 5-thiaPGE(1) as a new chemical lead. Introduction of an optimized omega chain to the 5-thiaPG skeleton afforded m-methoxymethyl derivative 33a, which showed the most potent EP4-receptor agonist activity and good subtype-selectivity both in vitro and in vivo. 9beta-HaloPGF derivatives were also synthesized and biologically evaluated in an attempt to block self-degradation of the beta-hydroxyketone moiety. Among these series, and 39b showed potent agonist activity and good subtype-selectivity. Structure-activity relationships (SARs) are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0968-0896(02)00031-7DOI Listing

Publication Analysis

Top Keywords

ep4-receptor agonist
8
chemical modification
8
agonist activity
8
activity good
8
good subtype-selectivity
8
design synthesis
4
synthesis selective
4
selective ep4-receptor
4
agonist 16-phenyl-5-thiapge1
4
16-phenyl-5-thiapge1 9-beta-halo
4

Similar Publications

Prostaglandin E receptor type 4 (EP4) agonists have been shown to be effective in treating experimental ulcerative colitis (UC) in animals and in human clinical trials, but their development has been impeded by unacceptable systemic side effects. In this study, a series of methylene phosphate prodrugs of a highly potent and selective prostaglandin EP4 receptor agonist were designed to target and remain localized in the gastrointestinal (GI) tract after either oral or rectal instillation. The prodrugs were designed to be converted to liberate active EP4 agonist by intestinal alkaline phosphate (IAP), a ubiquitous enzyme found at the luminal of the intestinal wall thus exposing the colon epithelial barrier while reducing systemic exposure to the active agonist.

View Article and Find Full Text PDF

The haemocyte highly-expressed E-type prostanoid receptor regulates TNF expression during immune response of oyster Crassostrea gigas.

Fish Shellfish Immunol

December 2024

Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.

Prostaglandin E2 imparts diverse physiological effects on multiple cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4), among which the EP4 is one of subtypes known to mediate the immune response in mammalian monocytes and macrophages. However, the precise characteristics and functions of EP4 in mollusks remain unclear. In the present study, an EP4 homologue (designated as CgEP4) was identified from oyster Crassostrea gigas.

View Article and Find Full Text PDF

PGE and HCN2 ion channels are critical mediators of pain initiated by angiotensin II.

Brain Behav Immun

December 2024

Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK. Electronic address:

Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), and more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R.

View Article and Find Full Text PDF

EP4: A prostanoid receptor that modulates insulin signalling in rat skeletal muscle cells.

Cell Signal

February 2025

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:

The EP4 (prostaglandin E2) receptor plays a crucial role in myogenesis and skeletal muscle regeneration, yet its involvement in regulating insulin-dependent metabolic pathways is not well characterised. Our research investigates the expression of EP4 in rat skeletal L6 myotubes and its impact on insulin signalling. We found that activation of EP4 by selective agonists disrupts insulin signalling and insulin-stimulated glucose uptake.

View Article and Find Full Text PDF

The inflammatory mediator prostaglandin E (PGE) binds to G-coupled EP2 and EP4 receptors. These receptors are located in the locus coeruleus (LC), the principal noradrenergic nucleus in the brain, but their functional role remains unknown. In this study, the PGE EP2 and EP4 receptors in LC cells from male rat brain slices were pharmacologically characterized by single-unit extracellular electrophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!